
The LinguisTiX bundle
निरंजन

2 February 2026 (v0.8)
HOME https://ctan.org/pkg/linguistix

Git-Alt https://puszcza.gnu.org.ua/projects/linguistix

COMMENTS https://matrix.to/#/#linguistix:matrix.org

Abstract

There are quite a few LATEX packages that support typesetting in linguistics, but
most of them lack a modern LATEX-like users syntax as well as a programming interface.
The LinguisTiX bundle fills this gap. It contains several packages enhancing the
general support for linguistics in LATEX. This is a comprehensive documentation of the
same comprising of three parts. The first one is the general users manual, the second
one documents the programming interface of the bundle, whereas the last one is the
documented implementation of all the packages.

Contents
1 Introduction 3

2 Planned 4

3 Funding 4

4 Acknowledgements 4

5 LinguisTiX-base 5
Interface… 19; Implementation… 25

6 LinguisTiX-fixpex 5
Interface… 20; Implementation… 26

7 LinguisTiX-fonts 5
Interface… 20; Implementation… 28

8 LinguisTiX-glossing 8
Interface… 20; Implementation… 38

9 LinguisTiX-ipa 11
Interface… 21; Implementation… 54

10 LinguisTiX-languages 14
Interface… 21; Implementation… 64

11 LinguisTiX-logos 16
Interface… 22; Implementation… 71

12 LinguisTiX-nfss 17
Interface… 22; Implementation… 72

Index 85
The LinguisTiX bundle
Copyright © 2025, 2026 निरंजन

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see
https://www.gnu.org/licenses/.

1

https://ctan.org/pkg/linguistix
https://puszcza.gnu.org.ua/projects/linguistix
https://matrix.to/#/#linguistix:matrix.org
https://www.gnu.org/licenses/

Dedicated to Renuka who taught me rigour under the guise of linguistics…

1 Introduction
Linguistics is a discipline that studies the phenomenon of language and for this linguists
analyse data from languages across the globe. In order to be able to present the data
that is collected for this, linguists use several representational methods that lead to a
fiasco when their typesetting is considered. In order to understand the complexity of the
task at hand, first, let’s have a look at some of the problem cases. If you are an impatient
reader and are just willing to read the users manual, you may skip reading the current
section and start with section 5 and the ones following it.

1 Phonetic symbols
Speech sounds are the building blocks of many human languages and the data collected
from languages demands an unambiguous method of representation which is served by
the International Phonetic Alphabet. For the longest time, the TIPA package (https:
//ctan.org/pkg/tipa) was the one that produced phonetic symbols in (LA)TEX. Visually,
it matches the default Computer Modern design of (LA)TEX, but TIPA is not Unicode. It
is set in a legacy encoding. With the recent developments, the New Computer Modern
family supports all the IPA characters (even the ones that are missing in TIPA). They are
created keeping in mind the principles of Knuth’s Computer Modern. Additionally, the
family also supports sans serif (recommended in presentations) and mono (recommended
in coding context) families. It supports two weights, i.e., book and regular respectively.
The book weight is slightly thicker than the regular weight, but the regular one matches
the thickness of the Computer Modern design. Because of the increased thickness, the
former looks better. The current document, for example, is typeset in the book weight of
New Computer Modern. If you are like me, you probably don’t like using non-LATEX-fonts.
The good news is that the requirements of linguistics are very well fulfilled by the recent
developments in the New Computer modern family and it does belong to the fraternity of
LATEX-fonts.

Apart from this, there are some other advantages of the New Computer Modern fonts.
The IPA distinguishes between [a] and [ɑ], but unfortunately, in Italic shape, the latter is
a variant of the former. E.g., [a\textit{a}] produces ‘[aa]’. Whenever an author uses
Italic shape for their transcription and use a, a wrong IPA symbol is printed with most
fonts. This problem was kindly acknowledged by Antonis Tsolomitis, the developer of
New Computer Modern. In the stylistic set dedicated for linguistics, the correct shape
was added to the Italic shape by him. Thus, \ipatext{a\textit{a}} (a command from
LinguisTiX-ipa) renders ‘[aa]’. The package enables New Computer Modern family with
stylistic set 05 dedicated for IPA. It also adds the brackets or slashes around the argument
as explained in section 9.

A similar problem is with the character g. E.g., [g\textit{g}] produces ‘[gg]’. Here,
the situation is the other way round. The upright ‘g’ is not recognised by the IPA. The
IPA charts generally have the upright version of the Italic shape. To see what this means,
try \ipatext{g\textit{g}}. It produces [gg] and not [gg].

In order to avail all of these features, I have set New Computer Modern as the default
font-family of LinguisTiX. The bundle provides options to control these defaults. Users
can use their preferred text and IPA fonts. There also is an option to use the regular
weight of NewCM instead of the book weight.

3

https://ctan.org/pkg/tipa
https://ctan.org/pkg/tipa

2 Planned
I plan to develop this bundle further in order to support the typesetting of good quality
examples with interlinear glossing. My model is to imitate the output of the expex package,
but with a modern LATEX-like syntax.

3 Funding
I am a doctorate student without a fellowship (thanks to our education policies!) currently
sustaining only with a full time job unrelated to linguistics that consumes most of my
working hours. At times, it becomes difficult to continue the research, the job and the
passion development projects. LinguisTiX needs funding in order to sustain. If you think
you can support it, you can contact me on the email ID found on the front page.

As of 2025-05-29, I have recieved funding from the TEX users group’s TEX develop-
ment fund. They have decided to support the development of ‘linguistix-glossing’ (the
logo will be available once the package is ready).

An experimental version of LinguisTiX-glossing is released on 2026-01-19. This
version is for testing and getting feedback from the community. This marks the completion
of the first grant provided by the TEX users group’s. The project will still continue to
develop further, so funding initiatives will be highly appreciated.

4 Acknowledgements
This package relies the most on the New Computer Modern font family. I would like to
express my gratitude to Antonis Tsolomitis who tirelessly worked on the set of IPA symbols
and brought back the good old charm of TIPA’s design in the modern Unicode world.
I would like to thank Renuka and Avinash who taught me linguistics. They nourished
my passion, helped me pursue my love for the subject as well as the computation that
came along with it. I could have never imagined myself working on a package written in
LATEX3’s syntax. Not so long ago, I used to find it very complicated. It’s mostly Jonathan
Spratte and Florent Rougon’s help (and, at times, scolding :P) that helped me get used
to it. I would also like to mention C.V. Radhakrishnan for being an important part of my
journey in LATEX. Lastly, to all the free software people who have created this friendly
and supportive world for people by investing their precious time and resources!

Hardly in a week after the initial release, the TEX users group decided to financially
support the development of a planned package in the bundle. I am grateful to them for
their support.

Documentation
The bundle is comprised of several packages that are developed for different purposes. In
order to load all the packages of the bundle, one can issue:

\usepackage{linguistix}

This is the easiest method for getting all of LinguisTiX in one go. But, if you don’t
need all the packages of the bundle, you may load the required packages separately. We
will start with the elementary package that sets up things for other packages of the bundle.

4

5 LinguisTiX-base LATEX3-interface | Implementation

This package provides a single command that is used in all the other packages of the
bundle. The command is:

{⟨key-value-list⟩}

We have a single set of keys for the entire bundle. Each package appends keys to the
same set. The argument of this central processor command is the comma-separated
⟨key-value-list⟩. So you can load any package of LinguisTiX and use the \linguistix
command. The only exception to this is LinguisTiX-nfss. We will see how it is different
in its section.

\linguistix

6 LinguisTiX-fixpex LATEX3-interface | Implementation

This package offers a fix for the clash between expex and (lua)-unicode-math. It provides
a single command.

This is a replica of the (lua)-unicode-math-\gla. Since the expex-\gla is more relevant in
linguistics, I set it as the default. If one needs to use (lua)-unicode-math-\gla, they can
use this command.

\umgla

7 LinguisTiX-fonts LATEX3-interface | Implementation

This is a package that loads the New Computer Modern family for the entire document.
The package sets fonts for both text and math. It has keys for customisation for both.
Note that just loading this package does not provide any support for IPA. For that one
needs LinguisTiX-ipa separately.

Antonis suggested a typographic enhancement for the logo of LATEX. The default
logo scales the ‘A’ and that affects the ‘colour’ of the font. This is why I renew the logo
with the code given by Antonis. The original logo is also available with an alternative
command.

LATEX
LATEX

\LaTeX
\ogLaTeX

The package provides only these commands. Let’s now have a look at the keys
provided for the text.

1 Text
Most keys of this package are prefixed with the text in order to distinguish them from
the maths and IPA ones. There aren’t any commands provided by the package. Most of
the important features of the fontspec packakge are variablised with l3keys.

The ‘old style numbers’ have varying heights. Some numbers have ascenders and
some have descenders (e.g., 6789). According to Bringhurst 2004, this makes them easier
to read in running text. Lining numbers, on the other hand have uniform heights. They
go well with all capital text (rare). Thus, for the general text, I enable this setting by
default in LinguisTiX-fonts.

5

Apart from that, the New Computer Modern font family provides an old-style shape
for the number ‘1’ (this exact shape!), but it is provided as a character variant. Different
fonts may use these arbitrary slots for any character’s alternation. Therefore this setting
should not be loaded blindly. Let’s have a look at the keys that can be employed to
change these behaviours.

= {⟨truth value⟩} true | false
= {⟨truth value⟩} true | false

If one wants to disable old style numbers, they may use the old style numbers key with
the false value (default is true)1. Note that printing of old style numbers also depends
on whether the font you select has old style numbers or not. The relevant settings are
added by the package to the font automatically, but while selecting the font, make sure
whether the old style table is present in the font or not.

Suppose one wants the alternative shape of number ‘1’ from the New Computer
Modern family, they may use the key old style one (default is false; adding true is
optional).

old style numbers
old style one

Let’s have a look at the three way distinction we get because of this.

0123456789 Old style with default 1

0123456789 Old style with the old 1

0123456789 Lining

These are some keys that come in handy for setting New Computer Modern defaults. All
the necessary values are stored in these. The keys that have regular in their names refer
to the ‘regular’ variants of New Computer Modern fonts. These variants match the colour
and widths of the Latin Modern fonts. One may use these keys to override the defaults.

newcm
newcm sans
newcm mono
newcm regular
newcm regular sans
newcm regular mono

2 Maths
LinguisTiX-fonts sets maths fonts also. I have used lua-unicode-math package which is
faster and which is said to be the future of maths in LATEX. But, as of now it is highly
experimental. If you want to stick to the stable unicode-math package. The trick is
simply to load the same before loading LinguisTiX. That will suppress the loading of
lua-unicode-math. In order to control the settings related to maths, the following keys can
be used.

= {⟨math font⟩}
= {⟨math font features⟩}
= {⟨bold math font⟩}
= {⟨bold math font features⟩}

The math and math bold keys set the respective fonts (i.e., regular and bold fonts for
mathematics respectively). The keys suffixed with features set the font features of the
same.

math
math features
math bold
math bold features

1The possible and the default values of keys are given at the right side in the documentation and the defaults
are highlighted in red.

6

= {⟨truth value⟩} true | false

In (LA)TEX, the default shape of the ‘empty set’ symbol is: ‘∅’, but the symbol used by
the Bourbaki group is still considered more correct and preferred by many (including
me). New Computer Modern Math fonts provide it by default and the slashed zero is
provided as a character variant. Since the Unicode-correct \emptyset is activated by
the package, it always renders: ‘∅’ and not: ‘∅’. In order to change this behaviour, one
may use this key and set it to false for getting the slashed-zero of original (LA)TEX. Hail
plumbers union, IYKYK! ;-)

bourbaki's empty set

7

8 LinguisTiX-glossing LATEX3-interface | Implementation

This package provides a suit for creating interlinear glosses. It is supported by TEX users
group’s devfund. The package attempts to be an all-in-one solution for glossing. It doesn’t
provide any particular glosses. It only provides a method to create them. Using it, one
may easily create packages like LinguisTiX-leipzig to support a set of glosses. The glosses
created by the package use the new code of the LATEX project as they are created in a
tagging aware manner. Each gloss sets a hyperlink to its position in the list of glosses.
Let’s take a look at its commands and options.

{⟨comma separated list of glosses⟩}
{⟨comma separated list of glosses⟩}

These simple commands take a comma separated list as their argument. All the items
from the list are glosses (either created by the user or provided by a package). Cases of
the items given in the list are ignored. Spaces around the items are ignored. The regular
unstarred command prints the glosses related to each of the item in the comma separated
list, whereas the starred variant prints their expansions. Have a look at the following
example.

\glx
\glx*

\DocumentMetadata{tagging=on,lang={en-GB}}
\documentclass{article}
\usepackage{linguistix}

\begin{document}
\glx{prs,pst}\par
\glx{ prs, pst }\par
\glx{ Prs,pSt}

\glx*{prs,pst}\par
\glx*{ prs, pst }\par
\glx*{ Prs,pST}
\end{document}

The expansions of PST and PRS (from LinguisTiX-leipzig package) are past and
present respectively. This example produces identical output in three lines for glosses and
the same for its expansions. Notice that there is no format to the cases of the glosses and
similarly one level of spaces are trimmed.

{⟨gloss⟩} {⟨expansion⟩}
{⟨gloss⟩} {⟨expansion⟩}
These commands create a new gloss or renew an existing one. They can be accessed
with the \glx command as explained above. Using \renewgloss mid-document is not
recommended as it will erase the data of page numbers for the previous (renewed) version
of it.

\newgloss
\renewgloss

[⟨setup keys⟩]

This command prints the list of glosses using the default settings. If the optional argument
is used, the adjustments are made locally only for a single run. E.g.:

\listofglosses

8

Glossary
PRS: present . 8 PST: past . 8

{⟨keys for formatting glosses⟩}

This command takes one argument, i.e., the keys that control everything regarding the
use of glosses and their expansions. The keys it takes are described in the section that
follows.

\setupglossing

1 Setting up the glosses
The following keys can be passed to the command \setupglossing. They control the
printing along with a lot of other things regarding glosses. All the customisation offered
by the package can be accessed via this command.

= {⟨formatted element gloss/expansion⟩} gloss | expansion

The format key is used for setting the format of either the gloss or the expansion. It’s
a meta key that takes other key-val pair in the argument. The nested keys control the
formatting of the respective elements.

format

= {⟨formatting commands for glosses⟩} \textsc{#1}
= {⟨formatting commands for glosses⟩}
These keys only work inside the meta key format. They set the commands that print
either the gloss or the expansion. #1 refers to the printed text of them. No special
formatting is applied to expansions by default, but glosses are by default printed in
\textsc.

gloss
expansion

= {⟨link color⟩} black

This option locally sets the colour for the hyperlinks. By default they are set to the black
colour.

link color

= {⟨sorting style⟩} alphabetical | use

This key controls how the keys printed in the list of glosses are ordered. They may be
ordered alphabetically or following the sequence in which they were used, the former
being the default.

sort

= {⟨case⟩} lowercase | title case all | title case first

The expansion can be printed in one of these three cases. The default printing happens
in lowercase.

expansion case

= {⟨glossary style⟩} block | inline

The package offers two styles. The inline style prints the glosses and their expansions
without page numbers in the flowing text, whereas the block style, in default settings
prints them in a multicolumn block with an unnumbered section with the glossary name.

style

9

= {⟨number of columns⟩} 2

The block style of glosses is printed in multicolumn layout by default. If the number of
columns has to be adjusted, this key shall be used. The default value of it is 2. It works
with only one column too.

columns

= {⟨truth value⟩} true | false

By default, page numbers on which a particular gloss was used are printed in the block
style. This can be turned off with this bool key.

page numbers

= {⟨section level⟩} section

In block style, a section heading is printed. In order to choose the level of sectioning,
this command can be used. The default is section which can be changed to any other
desired level. In addition the key allows an option null which suppresses the use of any
section heading.

sectioning

= {⟨truth value⟩} true | false

By default, the section number for the glossary is turned off, but if one wants to print it,
this bool key can be used with the true value.

section number

= {⟨truth value⟩} true | false

Generally, the glosses are printed in bold inside glossary. Some fonts don’t have bold
small caps (e.g., Latin Modern). If you need to stick to them, you can use this inverse
bool key with true value in order to obtain non-bold glosses.

no bold

= {⟨separator between glosses or expansions⟩}

This is a context-sensitive key. If used with \glx, then it sets the separator between
the glosses (,␣ is the default). If used with \glx*, it sets the separator between the
expansions (,␣ is the default) and if used with the \listofglosses, it sets the separator
between glosses and their expansions (:␣ is the default).

separator

= {⟨separator between pairs of glosses and expansions⟩}

Each pair of gloss and its expansion is separated using a token list controlled by this key.
The default is \par.

entry separator

10

9 LinguisTiX-ipa LATEX3-interface | Implementation

This package sets the fonts exclusively for the IPA. The commands provided for switching
to the IPA control all serif, sans serif and typewriter families. This package can be loaded
standalone for loading IPA fonts as well as some switch commands useful in running
text. New Computer Modern provides a special stylistic set dedicated for linguistics. It
is enabled for IPA fonts automatically with this package. Only the legally marked up
IPA is affected by the customisation provided by this package. For switching to the IPA,
LinguisTiX-ipa provides one command with a starred variant.

{⟨phonetic transcription⟩}
{⟨phonemic transcription⟩}
This is a command that resembles with the TIPA command \textipa. I have deliberately
kept it distinct from it so that just in case somebody wants to use their old TIPA
code in a Unicode document, the commands won’t clash (I highly discourage doing
this, though). The command comes with a starred variant. The behaviour of the un-
starred command is to print the argument in brackets for phonetic transcription, e.g.:
\ipatext{aɪ̯ pʰiː eɪ}̯⟶ [aɪ ̯ pʰiː eɪ]̯ whereas the starred version prints it in slashes for
phonemic transcription, e.g.: \ipatext*{aɪ̯ pʰiː eɪ}̯⟶ /aɪ ̯ pʰiː eɪ/̯.

\ipatext
\ipatext*

Suppose someone just wants to load the font without the brackets or slashes, they can
use the following command for switching to the IPA without adding the aforementioned.

This also is a command that switches to the IPA-only features (default as well as user
added). This command, of course, leaks and that’s why should be delimited. E.g., the
following code lines produce [aɪ ̯ pʰiː eɪ]̯ and /aɪ ̯ pʰiː eɪ/̯ respectively:

{\lngxipa [aɪ̯ pʰiː eɪ]̯}
{\lngxipa /aɪ̯ pʰiː eɪ/̯}

\lngxipa

These keys reset the IPA-only fonts to New Computer Modern. They can be used even for
resetting to New Computer Modern from another IPA font. In order to change or reset
to the IPA defaults these keys can be used. They store the names of the New Computer
Modern font family in the variables concerning IPA. The keys that contain regular in
their name use the regular version of New Computer Modern that matches the colour of
Latin Modern.

ipa newcm
ipa newcm sans
ipa newcm mono
ipa newcm regular
ipa newcm regular sans
ipa newcm regular mono

Let’s now see the combined table of font keys provided by both LinguisTiX-fonts
and LinguisTiX-ipa.

Family LinguisTiX-fonts LinguisTiX-ipa

Serif text main font ipa main font
text upright ipa upright
text upright features ipa upright features
text bold upright ipa bold upright
text bold upright features ipa bold upright features

Continued on the next page…

11

Family LinguisTiX-fonts LinguisTiX-ipa

text italic ipa italic
text italic features ipa italic features
text bold italic ipa bold italic
text bold italic features ipa bold italic features
text slanted ipa slanted
text slanted features ipa slanted features
text bold slanted ipa bold slanted
text bold slanted features ipa bold slanted features
text swash ipa swash
text swash features ipa swash features
text bold swash ipa bold swash
text bold swash features ipa bold swash features
text small caps ipa small caps
text small caps features ipa small caps features

Sans serif text sans font ipa sans font
text sans upright ipa sans upright
text sans upright features ipa sans upright features
text sans bold upright ipa sans bold upright
text sans bold upright features ipa sans bold upright features
text sans italic ipa sans italic
text sans italic features ipa sans italic features
text sans bold italic ipa sans bold italic
text sans bold italic features ipa sans bold italic features
text sans slanted ipa sans slanted
text sans slanted features ipa sans slanted features
text sans bold slanted ipa sans bold slanted
text sans bold slanted features ipa sans bold slanted features
text sans swash ipa sans swash
text sans swash features ipa sans swash features
text sans bold swash ipa sans bold swash
text sans bold swash features ipa sans bold swash features
text sans small caps ipa sans small caps
text sans small caps features ipa sans small caps features

Monospaced text mono font ipa mono font
text mono upright ipa mono upright
text mono upright features ipa mono upright features
text mono bold upright ipa mono bold upright
text mono bold upright features ipa mono bold upright features
text mono italic ipa mono italic
text mono italic features ipa mono italic features
text mono bold italic ipa mono bold italic
text mono bold italic features ipa mono bold italic features
text mono slanted ipa mono slanted
text mono slanted features ipa mono slanted features
text mono bold slanted ipa mono bold slanted

Continued on the next page…

12

Family LinguisTiX-fonts LinguisTiX-ipa

text mono bold slanted features ipa mono bold slanted features
text mono swash ipa mono swash
text mono swash features ipa mono swash features
text mono bold swash ipa mono bold swash
text mono bold swash features ipa mono bold swash features
text mono small caps ipa mono small caps
text mono small caps features ipa mono small caps features

End of the table…

Table 1: Font keys provided by LinguisTiX-fonts and LinguisTiX-ipa

Apart from these, both the packages provide the following keys for appending to the
extra features for the respective fonts:

• text extra features

• text sans extra features

• text mono extra features

• ipa extra features

• ipa sans extra features

• ipa mono extra features

13

10 LinguisTiX-languages LATEX3-interface | Implementation

This package is intended to provide support for loading Unicode fonts as well as other
necessary settings for using languages. It is a wrapper around the babel package, but it
provides some other useful settings which babel doesn’t agree to add. This package is a
little opinionated and pushes for ‘modern’ practices e.g., Unicode, LuaLATEX, no-markup
multilingual text etc. As of now, only a little support is available. If you want your
language to be supported, you can ask for support at the bug tracker of the repository or
you can send an email in the public mailing list for the project. You may subscribe to the
mailing list at: mail.gnu.org.ua/mailman/listinfo/linguistix-languages. Here, I
list down some LATEX-aspects that may demand some modifications in the default settings.

Fonts: The package works with Unicode and does not worry about legacy methods. If
you want support for your language, first and foremost, you should let me know
standard OpenType fonts suitable for your language. Note that they should be
freely licensed. I won’t support proprietary software with LinguisTiX.

babel support: As mentioned before, the package adds on to the support provided by
package babel. So check if the language files – specifically the modern .ini files – have
the correct settings. Sometimes they may need to undergo native-speakers scrutiny.
Whatever is wrong in babel, may not get corrected in LinguisTiX.

Numbers: LATEX uses a lot of counters and all of them, by default, print Latin nu-
merals/characters. E.g., \arabic{page} prints the page number in Latin, but
\roman{page} prints the same in Roman convention, i.e., ‘i, ii, …’. Does your
language allow them? E.g., Greek doesn’t like Latin alphabets, but doesn’t mind
Roman numerals. Instead of Latin alphabets, Greek prefers to use its own numeral
system. Marathi doesn’t like any of these, but it doesn’t have alternative forms
of numeration, so it changes certain cases drastically. E.g., in nested enumerate
environment, Marathi renews the printing of nested \items as 1, 1.1, 1.1.1 and 1.1.1.1.
This is reset to defaults when the language is changed. Keeping this in mind, I am
listing down some places where I found non-native numbering (I might have missed
something in which case it deserves to be reported as a bug, so feel free to do so!).

1. Page numbers (in front matter, main matter).
2. Part numbers.
3. Second, third and fourth levels of enumeration.

ExPex: Labels provided by ExPex package (see: tex.stackexchange.com/a/548668).

Typography: Language-specific conventions like using Italic for emphasis. It is a Latin-
script specific convention (note that I don’t mean slanted when I say Italic). Different
languages have different conventions of emphasising (e.g., Marathi uses bold font
for emphasis).

Miscellaneous: Anything other than these.

I am very much willing to support multilingual typesetting for multiple languages,
but I need to know the things mentioned in this list in order to provide the best suited
output. Please consider submitting a detailed feature request. The documentation of
supported languages is in separate PDFs. This documentation only describes the user-side
commands provided by the package.

14

mail.gnu.org.ua/mailman/listinfo/linguistix-languages
tex.stackexchange.com/a/548668

{⟨list of languages⟩}
{⟨list of languages⟩}

This key works with the central key-parser of LinguisTiX, i.e., \linguistix. It accepts
one argument that is a list of languages user wants to load. Unlike babel, the first element
of this list is set as the main language for the document. The command \loadlanguages
has the identical behaviour. In fact, it is a wrapper around the key.

languages
\loadlanguages

{⟨language options⟩} {⟨language name⟩}

This is a wrapper command over \babelprovide. The first argument is passed to the
optional argument of \babelprovide and the second one to the mandatory argument of
the same. For more information, please read babel’s manual.

Languages supported by LinguisTiX-languages are loaded with a package with that
language’s name. If it is absent, the package produces a warning.

\providelanguage

= {⟨strict/logical/off⟩}

Many languages need native digits. Adding them in a multilingual document is quite
complicated. This key sets the plugs provided for the socket of the same name. Language
packages already take care of them, but if you want to change anything mid-document,
you can use this key. It has three choices available as its value as seen below.

native numbering

The ‘strict’ plug changes the \lngx_counter:n command to the counter of the main
language of the document. That way all the counters are printed in the main language.

strict

This plug changes the meaning of \lngx_counter:n to the \localecounter command
provided by babel. It picks up the surrounding language and uses its native digits. E.g.,
when Marathi is being typeset, it will print counters in Marathi. When it is changed to
English, it will start printing the same in English. Note that this will reflect in table
of contents/tables/figures too. It is called logical numbering because it obeys TEX’s
logic more than what is generally considered the standard. E.g., imagine you have an
English section followed by a Marathi section on the same page. Both of them will follow
their own numerals for default TEX counters. Since both of them are on the same page,
while shipping out, the last active language will be used for processing the page number
(Marathi in this case). This creates a table of contents with Latin numeral as the section
counter, but Marathi numeral as the page number. Only experiments can determine if an
option like this can have valid use-cases, so it is provided. If you use it, be aware that the
results might not be the most pleasant to your aesthetic values. They are so because of
the logic of TEX.

logical

It is equivalent of the noop plug when the other two are not used at all. It is only required
when you want to go back to LATEX defaults. E.g., if you have turned strict native
numbering in some language and you want it to go back to LATEX defaults, you may use
this.

off

15

11 LinguisTiX-logos LATEX3-interface | Implementation

This is a small package that provides commands for printing logos of the LinguisTiX
bundle. The logo is printed in New Computer Modern Uncial font. It uses purple colour
for the ‘X’ in it and it is defined using l3color module. It provides one command that
takes an optional argument. Obviously it is ‘protected’. It is as follows:

[⟨package name⟩]

The logo of the ⟨package name⟩ from the LinguisTiX bundle is printed with this command,
e.g., \lngxlogo[fonts]⟶LinguisTiX-fonts.

\lngxlogo

Sometimes, the logos might be required to be used in an expandable way, but
optional arguments are not supported in expandable commands. Thus we create separate
commands for separate packages. Even these ones have the lngx prefix. It is followed
by the package name, e.g., fonts or ipa and finally the suffix logo. In the context of
hyperref, their behaviour is different than in the context of normal text.

16

12 LinguisTiX-nfss LATEX3-interface | Implementation

This is an extension package to the existing NFSS scheme of LATEX. The NFSS mainly
works on the four facets of the text, i.e., encoding, family, shape and series. These facets
are reset to default by the \normalfont and \selectfont commands. These commands
work on some internals that are reset with every usage of some commands that set them,
e.g., \rmfamily, \bfseries. There isn’t any way to control this unless some internals
are touched and there might be incidences where one does want to control them, e.g., try
compiling the following code in LuaLATEX.

\documentclass{article}

\begin{document}
\makeatletter
\fontencoding{OT1}\sffamily\itshape\bfseries
\selectfont
\f@encoding\ | \f@family\ | \f@series\ | \f@shape\quad
\normalfont
\f@encoding\ | \f@family\ | \f@series\ | \f@shape
\end{document}

As can be seen in the output, the first line shows the text in OT1 encoding, sans family,
bold series and Italic shape. After \normalfont, every aspect of the text is reset to the
default one. The default encoding is TU. We can see TU instead of OT1 after \normalfont.
So is the case with family (default: \rmfamily), series (default: \mdseries) and shape
(default: \upshape). This usually is okay, but sometimes it doesn’t fit the requirement.
E.g., the following might be used with the intention of switching from the IPA font to the
text font, but as can be seen, it doesn’t really change anything.

\documentclass{article}
\usepackage{linguistix-fonts}
\usepackage{linguistix-ipa}
\linguistix{%
text upright = {KpRoman-Regular.otf},%
text upright features = {Color={green}},%
ipa upright = {KpSans-Regular.otf},%
ipa upright features = {Color={red}}%

}

\begin{document}
test \lngxipa test \normalfont test
\end{document}

The reason for this is the way \lngxipa is defined. It resets \rmdefault, \sfdefault
and \ttdefault and uses \normalfont to initialise this new super font family (see:
https://tex.stackexchange.com/a/729805). Setting a ‘super’ font family effectively

17

https://tex.stackexchange.com/a/729805

changes the behaviour of \normalfont permanently. By the way, this is not just something
that LinguisTiX has to deal with. This situation may arise whenever one wants to have
a font family command that sets all serif, sans serif and monospaced font families.
LinguisTiX-nfss is useful in such cases. It introduces the concept of ‘super’ font family. It
shouldn’t be confused with LATEX2𝜀’s ‘meta’ font family. It refers to rm, sf or tt in the
kernel. This package provides control over these facets. Let’s have a look at the macros it
provides.

{⟨encoding⟩} {⟨true code⟩} {⟨false code⟩}
{⟨encoding⟩} {⟨true code⟩}
{⟨encoding⟩} {⟨false code⟩}

If the current encoding matches with the given ⟨encoding⟩, it selects the true branch;
false otherwise. The \CurrentEncoding macro expands to the current encoding.

\IfEncodingTF ⋆
\IfEncodingT ⋆
\IfEncodingF ⋆
\CurrentEncoding ⋆

{⟨meta family⟩} {⟨true code⟩} {⟨false code⟩}
{⟨meta family⟩} {⟨true code⟩}
{⟨meta family⟩} {⟨false code⟩}

If the current meta family matches with the given ⟨meta family⟩, it selects the true
branch; false otherwise. The \CurrentMetaFamily macro expands to the current meta
family.

\IfMetaFamilyTF ⋆
\IfMetaFamilyT ⋆
\IfMetaFamilyF ⋆
\CurrentMetaFamily ⋆

{⟨super family⟩} {⟨true code⟩} {⟨false code⟩}
{⟨super family⟩} {⟨true code⟩}
{⟨super family⟩} {⟨false code⟩}

If the current super family matches with the given ⟨super family⟩, it selects the true
branch; false otherwise. The \CurrentSuperFamily macro expands to the current super
family.

\IfSuperFamilyTF ⋆
\IfSuperFamilyT ⋆
\IfSuperFamilyF ⋆
\CurrentSuperFamily ⋆

{⟨series⟩} {⟨true code⟩} {⟨false code⟩}
{⟨series⟩} {⟨true code⟩}
{⟨series⟩} {⟨false code⟩}

If the current series matches with the given ⟨series⟩, it selects the true branch and false
otherwise. The \CurrentSeries macro expands to the current series.

\IfSeriesTF ⋆
\IfSeriesT ⋆
\IfSeriesF ⋆
\CurrentSeries ⋆

{⟨shape⟩} {⟨true code⟩} {⟨false code⟩}
{⟨shape⟩} {⟨true code⟩}
{⟨shape⟩} {⟨false code⟩}

If the current series matches with the given ⟨shape⟩, it selects the true branch and false
otherwise. The \CurrentShape macro expands to the current shape.

\IfShapeTF ⋆
\IfShapeT ⋆
\IfShapeF ⋆
\CurrentShape ⋆

{⟨family ID⟩} {⟨rm={⟨rm NFSS⟩},sf={⟨sf NFSS⟩},tt={⟨tt NFSS⟩}⟩}

Every super font family has a ⟨family ID⟩, even the default one (i.e., default). This
command creates a super family with the given ⟨family ID⟩s. The ⟨meta family keys⟩
argument accepts a list of specific keys, rm, sf and tt. They take the NFSS family names
of these meta families as arguments. One may define a font with, say, \newfontfamily,
pass the NFSSkeys={⟨key⟩} option to it and use the ⟨key⟩ in the suitable ⟨meta family
key⟩. Note that using all these keys is not mandatory. A super family may have ≤ 3 keys.

\superfontfamily

18

{⟨ID⟩}{⟨encoding,family,series,shape⟩}
{⟨ID⟩}
{⟨ID⟩}

These commands loads the super font family with the given ⟨ID⟩. The attributes listed in
the second argument are the only choices available. The required super font family is loaded
and the listed attributes are reset to the ones that were active before. All the four are not
required. The number of attributes may be ≤ 4. The \softernormalfont command ex-
cludes encoding and reactivates all the other attributes, whereas the \softestnormalfont
command reactivates all of them.

\softsuperfontfamily
\softersuperfontfamily
\softestsuperfontfamily

{⟨encoding,family,series,shape⟩}

Similar to \softsuperfontfamily and friends, these commands switch back to the default
super font family, but reactivate the previously active font attributes. The argument to
\softnormalfont takes the list of the required font attributes. It can have ≤ 4 values.
Now try the following example:

\softnormalfont
\softernormalfont
\softestnormalfont

\documentclass{article}
\usepackage{linguistix}
\linguistix{%
text upright features = {Color={green}},%
ipa upright features = {Color={red}}%

}

\begin{document}
test \lngxipa test \softernormalfont test\par
\makeatletter
\sffamily\itshape\bfseries
\f@family\ | \f@series\ | \f@shape\quad
\softnormalfont{series}
\f@family\ | \f@series\ | \f@shape
\end{document}

Better? :-)

LATEX3 interface for programmers
In this section, we take a look at the public LATEX3 commands of the bundle. These can
be considered stable and can be used in production code.

LinguisTiX-base Documentation | Implementation

⟨keyval list⟩

This is the base command for \linguistix. It takes a comma separated list of ⟨keyval
list⟩ and parses it.

\lngx_set_keys:n

19

LinguisTiX-fixpex Documentation | Implementation

No LATEX3 function provided by this package.

LinguisTiX-fonts Documentation | Implementation

These are the two booleans that are used to check if the old style numbers, the old style
one (i.e., ‘1’) and Bourbaki’s emtpy set symbol (i.e., ‘∅’) is asked by the user.

\g_lngx_old_style_bool
\g_lngx_old_style_one_bool
\g_lngx_bourbaki_bool

{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
These commands take two arguments, retrieve the values of the data variables if :VV
variants are used. These are wrapper commands around the font-setting commands of
fontspec and (lua)-unicode-math, i.e., \setmainfont, \setsansfont, \setmonofont and
\setmathfont. The ⟨features⟩ are passed to the optional argument and the ⟨font⟩ is
passed to the mandatory argument of the respective command from the aforementioned
list.

\lngx_set_main_font:nn
\lngx_set_main_font:VV
\lngx_set_sans_font:nn
\lngx_set_sans_font:VV
\lngx_set_mono_font:nn
\lngx_set_mono_font:VV
\lngx_set_math_font:nn
\lngx_set_math_font:VV

{⟨language⟩} {⟨features⟩} {⟨font⟩}
{⟨language⟩} {⟨features⟩} {⟨font⟩}
{⟨language⟩} {⟨features⟩} {⟨font⟩}
These commands take three arguments. These are wrapper commands around the font-
setting commands of babel. The ⟨features⟩ are passed to the optional argument and
the ⟨font⟩ is passed to the mandatory argument of the respective command from the
aforementioned list.

\lngx_other_main_font:nnn
\lngx_other_main_font:nee
\lngx_other_sans_font:nnn
\lngx_other_sans_font:nee
\lngx_other_mono_font:nnn
\lngx_other_mono_font:nee

LinguisTiX-glossing Documentation | Implementation

{⟨gloss⟩}
{⟨expansion⟩}
This function is controlled by the key format. Its argument is the gloss or the expansion
itself. According to the definition set in the key, the argument gets printed.

\lngx_gloss_format:n
\lngx_expansion_format:n

{⟨gloss⟩} {⟨expansion⟩}

This function creates a new gloss. It is later equated with the \newgloss command.
\lngx_gloss_new:nn

This functions prints the list of glosses and is equated with \listofglosses.\lngx_gloss_list:

{⟨section title⟩}

This environment reads an integer variable, i.e., \l__lngx_glossary_columns_int. It
is controlled by the columns key. If its number is more than one (which, by default is
more than one), the multicols environment is used around the content that comes in
between, or else no action is taken. It takes one compulsory argument, i.e., the content of
the section title material. This environment should not be used outside this package.

lngx_multicols

20

LinguisTiX-ipa Documentation | Implementation

This package provides a few wrapper functions around fontspec’s commands.

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the serif variants. The ⟨font⟩ is set with ⟨features⟩
for the serif IPA. The command to switch to this family is \lngx_main_ipa:. It can be
accessed with the NFSS family lngx_ipa_rm_nfss.

\lngx_set_main_ipa_font:nn
\lngx_set_main_ipa_font:VV
\lngx_main_ipa:
lngx_ipa_rm_nfss

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the sans variants. The ⟨font⟩ is set with ⟨features⟩
for the sans IPA. The command to switch to this family is \lngx_sans_ipa:. It can be
accessed with the NFSS family lngx_ipa_sf_nfss.

\lngx_set_sans_ipa_font:nn
\lngx_set_sans_ipa_font:VV
\lngx_sans_ipa:
lngx_ipa_sf_nfss

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the mono variants. The ⟨font⟩ is set with ⟨features⟩
for the mono IPA. The command to switch to this family is \lngx_mono_ipa:. It can be
accessed with the NFSS family lngx_ipa_nfss_nfss.

\lngx_set_mono_ipa_font:nn
\lngx_set_mono_ipa_font:VV
\lngx_mono_ipa:
lngx_ipa_tt_nfss

The \lngx_ipa: command loads the super family lngx_ipa (see the documentation of
LinguisTiX-nfss). The \lngx_ipa: function has a user-side command \lngxipa too.

\lngx_ipa:
lngx_ipa

LinguisTiX-languages Documentation | Implementation

Here are the L3 functions defined for LinguisTiX-languages.

A tl that globally stores the main language of the document.\g_lngx_main_language_tl

A clist that globally stores the languages that are used.\g_lngx_languages_clist

{⟨language options⟩} {⟨language name⟩}
⟨language options tl⟩ ⟨language tl⟩
These functions read the V-type argument provided to them and pass it to the
\babelprovide command for loading languages.

\lngx_languages:nn
\lngx_languages:VV

{⟨list of languages⟩}

This function loads the languages in LinguisTiX sense.
\lngx_load_languages:n

This is a developers function provided for printing the counter based on the plug selected.
It changes the meaning according to the active value of native-numbering socket.

\lngx_counter:n

This function resets a lot of custom settings done by some languages. It has to be used
inside \addto macro provided by the babel package.

\lngx_misc_reset:

21

LinguisTiX-logos Documentation | Implementation

There are only two LATEX3 functions provided by this package.

This function switches to the New Computer Modern Uncial font family.\lngx_logo_font:

I don’t like the default purple colour of the xcolor package (i.e.,). Thus I have created
a new colour using l3color module. It can be accessed using this variable. The color looks
like: .

lngx_purple_color

LinguisTiX-nfss Documentation | Implementation

This subsection discusses the programming interface LinguisTiX-nfss provides.

These tls expand to the default values of the fonts set at the begindocument/end
hook. These are not supposed to be changed and hence they are set with the c prefix.

\c_lngx_default_rmdefault_tl ⋆
\c_lngx_default_sfdefault_tl ⋆
\c_lngx_default_ttdefault_tl ⋆

These tls expand to the current values of encoding, meta family, super family,
series and shape respectively. Note that these are updated time to time by the
commands that change them (package-internal or LATEX-internal).

\l_lngx_current_encoding_tl ⋆
\l_lngx_current_meta_family_tl ⋆
\l_lngx_current_super_family_tl ⋆
\l_lngx_current_series_tl ⋆
\l_lngx_current_shape_tl ⋆

{⟨encoding⟩}
{⟨encoding⟩}{⟨true code⟩}{⟨false code⟩}
{⟨meta font family⟩}
{⟨meta font family⟩}{⟨true code⟩}{⟨false code⟩}
{⟨super font family⟩}
{⟨super font family⟩}{⟨true code⟩}{⟨false code⟩}
{⟨series⟩}
{⟨series⟩}{⟨true code⟩}{⟨false code⟩}
{⟨shape⟩}
{⟨shape⟩}{⟨true code⟩}{⟨false code⟩}

\lngx_if_encoding_p:n ⋆
\lngx_if_encoding:nTF ⋆
\lngx_if_meta_family_p:n ⋆
\lngx_if_meta_family:nTF ⋆
\lngx_if_super_family_p:n ⋆
\lngx_if_super_family:nTF ⋆
\lngx_if_series_p:n ⋆
\lngx_if_series:nTF ⋆
\lngx_if_shape_p:n ⋆
\lngx_if_shape:nTF ⋆

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

\lngx_if_meta_family_rm_p: ⋆
\lngx_if_meta_family_rm:TF ⋆
\lngx_if_meta_family_sf_p: ⋆
\lngx_if_meta_family_sf:TF ⋆
\lngx_if_meta_family_tt_p: ⋆
\lngx_if_meta_family_tt:TF ⋆

These conditionals select the true branch if the rm, sf, tt families (respectively) are active,
false otherwise.

22

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

These conditionals select the true branch if the md, bf series (respectively) are active,
false otherwise.

\lngx_if_series_md_p: ⋆
\lngx_if_series_md:TF ⋆
\lngx_if_series_bf_p: ⋆
\lngx_if_series_bf:TF ⋆

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}
These conditionals select the true branch if the up, it, sc, ssc, sl, sw, ulc shapes
(respectively) are active, false otherwise.

\lngx_if_shape_up_p: ⋆
\lngx_if_shape_up:TF ⋆
\lngx_if_shape_it_p: ⋆
\lngx_if_shape_it:TF ⋆
\lngx_if_shape_sc_p: ⋆
\lngx_if_shape_sc:TF ⋆
\lngx_if_shape_ssc_p: ⋆
\lngx_if_shape_ssc:TF ⋆
\lngx_if_shape_sl_p: ⋆
\lngx_if_shape_sl:TF ⋆
\lngx_if_shape_sw_p: ⋆
\lngx_if_shape_sw:TF ⋆
\lngx_if_shape_ulc_p: ⋆
\lngx_if_shape_ulc:TF ⋆

{⟨family ID⟩} {⟨rm={⟨rm NFSS⟩},sf={⟨sf NFSS⟩},tt={⟨tt NFSS⟩}⟩}

This function takes an ⟨ID⟩ and sets the rm, sf, tt values as requested by the user and
creates a super font family.

\lngx_super_font_family:nn

{⟨ID⟩}{⟨encoding,family,series,shape⟩}
{⟨ID⟩}
{⟨ID⟩}

\lngx_soft_super_font_family:nn
\lngx_softer_super_font_family:n
\lngx_softest_super_font_family:n

The \lngx_soft_super_font_family:nn sets super family marked by the ⟨ID⟩ and
reactivates the currently active font attributes listed in the second argument. The other
two do the same, but without the list. the softer one omits the encoding and the
softest one reactivate all of them.

{⟨ID⟩}

Quite similar to the soft super family functions, these ones set the default font family and
reactivate the font attributes. The soft one sets the attributes listed in the argument.
The softer one omits encoding and reactivates the rest and the softest one reactivates
all.

\lngx_soft_normal_font:n
\lngx_softer_normal_font:
\lngx_softest_normal_font:

23

Implementation
In this section the code of this bundle is documented. Each package in the bundle is
documented in a separate subsection.

LinguisTiX

Provide the package with its basic information.
1 ⟨∗package⟩
2 \ProvidesExplPackage{linguistix}
3 {2026-02-02}
4 {v0.8}
5 {%
6 The ‘LinguisTiX’ bundle: Enhanced
7 support for linguistics.%
8 }

When one loads LinguisTiX, all the packages of the bundle are loaded automatically.
That’s the only content of the umbrella package LinguisTiX. All the packages are loaded
conditionally (i.e., only if not loaded already).

9

10 \IfPackageLoadedF { linguistix-base } {
11 \RequirePackage { linguistix-base }
12 }
13 \IfPackageLoadedF { linguistix-fonts } {
14 \RequirePackage { linguistix-fonts }
15 }
16 \IfPackageLoadedF { linguistix-glossing } {
17 \RequirePackage { linguistix-glossing }
18 }
19 \IfPackageLoadedF { linguistix-ipa } {
20 \RequirePackage { linguistix-ipa }
21 }
22 \IfPackageLoadedF { linguistix-languages } {
23 \RequirePackage { linguistix-languages }
24 }
25 \IfPackageLoadedF { linguistix-leipzig } {
26 \RequirePackage { linguistix-leipzig }
27 }
28 \IfPackageLoadedF { linguistix-logos } {
29 \RequirePackage { linguistix-logos }
30 }
31 \IfPackageLoadedF { linguistix-nfss } {
32 \RequirePackage { linguistix-nfss }
33 }
34 ⟨/package⟩

24

LinguisTiX-base Documentation | LATEX3-interface

Set the essentials of the package.
35 ⟨∗base⟩
36 \ProvidesExplPackage{linguistix-base}
37 {2026-02-02}
38 {v0.8}
39 {%
40 The base package of the ‘LinguisTiX’
41 bundle.%
42 }

\lngx_set_keys:n I use the l3keys module of LATEX3 for creating the key-values used in this bundle. In order
to get a singleton parser for all the packages of the bundle, I have create this parsing
command that is used throughout the bundle.

43

44 \cs_new_protected:Npn \lngx_set_keys:n #1 {
45 \keys_set:nn { lngx_keys } { #1 }
46 }

(End of definition for \lngx_set_keys:n. This function is documented on page 19.)

\linguistix I equate this command with a user-side macro here and end the LinguisTiX-base package.
47

48 \cs_gset_eq:NN \linguistix \lngx_set_keys:n
49 ⟨/base⟩

(End of definition for \linguistix. This function is documented on page 5.)

25

LinguisTiX-fixpex Documentation | LATEX3-interface

The unicode-math and lua-unicode-math packages define \gla command which clashes
with the same command defined by the expex package. Of course, the expex-\gla is
more relevant in linguistics. Thus I will save that and provide a new command for the
(lua)-unicode-math-\gla. This is not relevant to people who are not using expex. Thus,
the settings are loaded only conditionally.

50 ⟨∗fixpex⟩
51 \ProvidesExplPackage{linguistix-fixpex}
52 {2026-02-02}
53 {v0.8}
54 {%
55 To fix the clash between ‘expex’ and
56 (lua-unicode-math).%
57 }

This package is useful only if either expex or (lua)-unicode-math is loaded. Otherwise, it is
of no use. Thus, I create a message when either of them is not loaded.

58

59 \msg_new:nnn { fixpex } { pkg_not_loaded } {
60 The~ ‘LinguisTiX-fixpex’~ package~ is~ a~ first-aid~
61 for~ resolving~ the~ clash~ between~
62 ‘(lua)-unicode-math’\\ and~ ‘expex’.~ It~ should~ only~
63 be~ used~ if~ at~ least\\ one~ of~ the~ two~ is~ loaded.~
64 Here~ ‘LinguisTiX-fixpex’\\ is~ not~ needed~ as~ you~
65 ‘#1’~ is~ not~ loaded.
66 }

I first start the hook begindocument/before.
67

68 \hook_gput_code:nnn { begindocument / before } { . } {

The (lua)-unicode-math package defines \gla after \begin{document}, so the fix needs
to be added after that is done. For that, I start the begindocument/end hook.

69 \IfPackageLoadedTF { expex } {
70 \exp_args:Ne
71 \IfPackageLoadedTF {
72 \sys_if_engine_luatex:TF {
73 \IfPackageLoadedF { unicode-math } {
74 unicode-math
75 } {
76 lua-unicode-math
77 }
78 } {
79 unicode-math
80 }
81 } {
82 \hook_gput_code:nnn { begindocument / end } { . } {

\umgla This replicates the (lua)-unicode-math-\gla for future use.
83 \cs_gset_eq:NN \umgla \gla

(End of definition for \umgla. This function is documented on page 5.)
The expex-\gla is then equated to the internal function of the package that does the
actual function (Munn and Gregorio 2023).

26

84 \cs_gset_eq:NN \gla \glw@gla
85 }

In the false branch of (lua)-unicode-math, I issue an info message that is not visible on the
terminal, but is printed in the log file.

86 } {
87 \msg_info:nnn { fixpex } { pkg_not_loaded } {
88 (lua)-unicode-math
89 }
90 }

Similarly, I do it for expex.
91 } {
92 \msg_info:nnn { fixpex } { pkg_not_loaded } {
93 expex
94 }
95 }
96 }
97 ⟨/fixpex⟩

27

LinguisTiX-fonts Documentation | LATEX3-interface

Package essentials first.
98 ⟨∗font⟩
99 \ProvidesExplPackage{linguistix-fonts}
100 {2026-02-02}
101 {v0.8}
102 {%
103 The font-assistant package of the
104 ‘LinguisTiX’ bundle.%
105 }

Then, I load unicode-math or lua-unicode-math (depending on the engine used), LinguisTiX-
nfss and LinguisTiX-base (if they are not already loaded).
106

107 \IfPackageLoadedF { linguistix-base } {
108 \RequirePackage { linguistix-base }
109 }
110

111 \sys_if_engine_luatex:TF {
112 \IfPackageLoadedF { unicode-math } {
113 \IfPackageLoadedF { lua-unicode-math } {
114 \RequirePackage { fontspec, lua-unicode-math }
115 }
116 }
117 } {
118 \IfPackageLoadedF { unicode-math } {
119 \RequirePackage { unicode-math }
120 }
121 }
122

123 \IfPackageLoadedF { linguistix-fixpex } {
124 \RequirePackage { linguistix-fixpex }
125 }

\LaTeX
\ogLaTeX

We save the original code for the \LaTeX logo and then renew the command.
126

127 \NewCommandCopy \ogLaTeX \LaTeX
128

129 \RenewDocumentCommand \LaTeX { } {%
130 L\kern-.81ex\relax
131 \raisebox{.6ex}{\textsc{a}}\kern-.23ex\relax
132 \hbox{T}\kern-.4ex\relax
133 \raisebox{-.5ex}{E}\kern-.3ex\relax
134 X%
135 }

(End of definition for \LaTeX and \ogLaTeX. These functions are documented on page 5.)

old style numbers
\g_lngx_old_style_bool

old style one
\g_lngx_old_style_one_bool

bourbaki's empty set
\g_lngx_bourbaki_bool

I use the .bool_gset:N key-type of l3keys for developing these boolean keys.
136

137 \keys_define:nn { lngx_keys } {
138 old~ style~ numbers
139 .bool_gset:N = {

28

140 \g_lngx_old_style_bool
141 },
142 old~ style~ one
143 .bool_gset:N = {
144 \g_lngx_old_style_one_bool
145 },
146 bourbaki's~ empty~ set
147 .bool_gset:N = {
148 \g_lngx_bourbaki_bool
149 }
150 }

(End of definition for old style numbers and others. These functions are documented on page 6.)

\g__lngx_text_main_fonts_prop
\g__lngx_text_main_font_features_tl

text upright
text upright features

text bold upright
text bold upright features

text italic
text italic features

text bold italic
text bold italic features

text slanted
text slanted features

text bold slanted
text bold slanted features

text swash
text swash features

text bold swash
text bold swash features

text small caps
text small caps features

In the first few versions of the package, I used to save the font-names and their features
in token lists, but I found a better way to deal with this later which was using prop lists.
I had released the tls publicly (with a single _ after the scope marker), which means
ideally they should be available forever, but for performance and maintenance the newer
approach is much preferred and hence I decided to shift to prop lists from v0.6. This
time, I am correcting the mistake I made before. The prop lists that save the keys is
not public. It need not be. Only the key-value pairs are public. They are unchanged
anyway. This section describes the implementation of serif text fonts. All these keys
have a common pattern of code. For the convenience of maintenance, I have created a
comma-separated-list and used the elements of this list inside the common code. (See:
https://topanswers.xyz/tex?q=8074#a7689.)

151

152 \prop_gclear_new:N \g__lngx_text_main_fonts_prop
153 \tl_gclear_new:N \g__lngx_text_main_font_features_tl
154

155 \clist_map_inline:nn {
156 upright,
157 bold~ upright,
158 italic,
159 bold~ italic,
160 slanted,
161 bold~ slanted,
162 swash,
163 bold~ swash,
164 small~ caps
165 } {

All the keys here are prefixed with the word text in order to distinguish them from the
keys provided by the LinguisTiX-ipa package. The argument of these keys should be
expanded for which I use \prop_gput:Nne function. Each #1 is replaced by the items
from clist and the loop is repeated, whereas ##1 is the argument passed to the key by
user.
166 \keys_define:nn { lngx_keys } {
167 text~ #1
168 .code:n = {

I start a group first. Then clear and set a temporary string variable. I make the text of
the key titlecased as required by fontspec and remove the spaces. Lastly, the word Font
is appended. So, bold italic becomes BoldItalicFont.
169 \group_begin:

29

https://topanswers.xyz/tex?q=8074#a7689

170 \str_clear:N \l_tmpa_str
171 \str_set:Ne \l_tmpa_str {
172 \text_titlecase_all:n { #1 }
173 Font
174 }
175 \str_replace_all:Nnn \l_tmpa_str { ~ } { }

The string is used inside the relevant prop-key and group is ended.
176 \prop_gput:Nne \g__lngx_text_main_fonts_prop
177 { text~ #1 }
178 { \str_use:N \l_tmpa_str = { ##1 } }
179 \group_end:
180 },

Same is repeated for features.
181 text~ #1~ features
182 .code:n = {
183 \group_begin:
184 \str_clear:N \l_tmpa_str
185 \str_set:Ne \l_tmpa_str {
186 \text_titlecase_all:n { #1 }
187 Features
188 }
189 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
190 \prop_gput:Nne \g__lngx_text_main_fonts_prop
191 { text~ #1~ features }
192 {
193 \str_use:N \l_tmpa_str = { ##1 }
194 }
195 \group_end:
196 }
197 }
198 }

(End of definition for \g__lngx_text_main_fonts_prop and others. These functions are documented on page
11.)

text extra features This key adds to the property that stores the extra features for the serif fonts.
199

200 \keys_define:nn { lngx_keys } {
201 text~ extra~ features
202 .prop_gput:N = \g__lngx_text_main_fonts_prop
203 }

(End of definition for text extra features. This function is documented on page 13.)

30

\g__lngx_text_sans_fonts_prop
\g__lngx_text_sans_font_features_tl

\g__lngx_text_mono_fonts_prop
\g__lngx_text_mono_font_features_tl

text sans upright
text sans upright features

text sans bold upright
text sans bold upright features

text sans italic
text sans italic features

text sans bold italic
text sans bold italic features

text sans slanted
text sans slanted features

text sans bold slanted
text sans bold slanted features

text sans swash
text sans swash features

text sans bold swash
text sans bold swash features

text sans small caps
text sans small caps features

text mono upright
text mono upright features

text mono bold upright
text mono bold upright features

text mono italic
text mono italic features

text mono bold italic
text mono bold italic features

text mono slanted
text mono slanted features

text mono bold slanted
text mono bold slanted features

text mono swash
text mono swash features

text mono bold swash
text mono bold swash features

text mono small caps
text mono small caps features

Since the only difference between the upcoming keys is that of the word sans and mono,
we combine them together and use a nested clist. The rest of the mechanism is identical.
204

205 \prop_gclear_new:N \g__lngx_text_sans_fonts_prop
206 \tl_gclear_new:N \g__lngx_text_sans_font_features_tl
207

208 \prop_gclear_new:N \g__lngx_text_mono_fonts_prop
209 \tl_gclear_new:N \g__lngx_text_mono_font_features_tl
210

211 \clist_map_inline:nn {
212 sans,
213 mono
214 } {
215 \clist_map_inline:nn {
216 upright,
217 bold~ upright,
218 italic,
219 bold~ italic,
220 slanted,
221 bold~ slanted,
222 swash,
223 bold~ swash,
224 small~ caps
225 } {
226 \keys_define:nn { lngx_keys } {
227 text~ #1~ ##1
228 .code:n = {
229 \group_begin:
230 \str_clear:N \l_tmpa_str
231 \str_set:Ne \l_tmpa_str {
232 \text_titlecase_all:n { ##1 }
233 Font
234 }
235 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
236 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
237 { text~ #1~ ##1 }
238 { ####1 }
239 \group_end:
240 },
241 text~ #1~ ##1~ features
242 .code:n = {
243 \group_begin:
244 \str_clear:N \l_tmpa_str
245 \str_set:Ne \l_tmpa_str {
246 \text_titlecase_all:n { #1 }
247 Features
248 }
249 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
250 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
251 { text~ #1~ ##1~ features }
252 {
253 \str_use:N \l_tmpa_str = { ####1 }
254 }
255 \group_end:

31

256 }
257 }
258 }
259 \keys_define:nn { lngx_keys } {
260 text~ #1~ extra~ features
261 .prop_gput:c = {
262 g__lngx_text_ #1 _fonts_prop
263 }
264 }
265 }

(End of definition for \g__lngx_text_sans_fonts_prop and others. These functions are documented on page
12.)

\g__lngx_text_main_font_tl
\g__lngx_text_sans_font_tl
\g__lngx_text_mono_font_tl

text main font
text sans font
text mono font

These keys add the parameter that sets the main font for text. They set an internal token
list which is retrieved later by font setting command.
266

267 \clist_map_inline:nn {
268 main,
269 sans,
270 mono
271 } {
272 \keys_define:nn { lngx_keys } {
273 text~ #1~ font
274 .tl_gset:c = { g__lngx_text_ #1 _font_tl }
275 }
276 }

(End of definition for \g__lngx_text_main_font_tl and others. These functions are documented on page 11.)

\g__lngx_math_fonts_prop
\g__lngx_math_features_tl

\g__lngx_math_bold_fonts_prop
\g__lngx_math_bold_features_tl

math
math features

math bold
math bold features

The following are the keys set for math. They use the same mechanism as before.
277

278 \prop_gclear_new:N \g__lngx_math_fonts_prop
279 \tl_gclear_new:N \g__lngx_math_features_tl
280

281 \prop_gclear_new:N \g__lngx_math_bold_fonts_prop
282 \tl_gclear_new:N \g__lngx_math_bold_features_tl
283

284 \keys_define:nn { lngx_keys } {
285 math
286 .tl_gset:N = \g__lngx_math_font_tl,
287 math~ bold
288 .tl_gset:N = \g__lngx_math_bold_font_tl,
289 math~ features
290 .prop_gput:N = \g__lngx_math_fonts_prop,
291 math~ bold~ features
292 .prop_gput:N = \g__lngx_math_bold_fonts_prop
293 }

(End of definition for \g__lngx_math_fonts_prop and others. These functions are documented on page 6.)

newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families.
294

295 \keys_define:nn { lngx_keys } {

32

296 newcm
297 .meta:n = {
298 text~ main~ font = { NewCM10-Book.otf },
299 text~ sans~ font = { NewCMSans10-Book.otf },
300 text~ mono~ font = { NewCMMono10-Book.otf },
301 math = { NewCMMath-Book.otf },
302 math~ bold = { NewCMMath-Bold.otf }
303 }
304 }

(End of definition for newcm. This function is documented on page 6.)

newcm sans This is a .meta:n key that sets the default fonts to the sans family.
305

306 \keys_define:nn { lngx_keys } {
307 newcm~ sans
308 .meta:n = {
309 main~ font = { NewCMSans10-Book.otf },
310 sans~ font = { NewCMSans10-Book.otf },
311 mono~ font = { NewCMMono10-Book.otf },
312 math = { NewCMSansMath-Regular.otf },
313 math~ bold = { NewCMSansMath-Regular.otf }
314 }
315 }

(End of definition for newcm sans. This function is documented on page 6.)

newcm mono This is a .meta:n key that sets the default fonts to the monospaced family.
316

317 \keys_define:nn { lngx_keys } {
318 newcm~ mono
319 .meta:n = {
320 main~ font = { NewCMMono10-Book.otf },
321 sans~ font = { NewCMSans10-Book.otf },
322 mono~ font = { NewCMMono10-Book.otf },
323 math = { NewCMSansMath-Regular.otf },
324 math~ bold = { NewCMSansMath-Regular.otf }
325 }
326 }

(End of definition for newcm mono. This function is documented on page 6.)

newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.
327

328 \keys_define:nn { lngx_keys } {
329 newcm~ regular
330 .meta:n = {
331 main~ font = { NewCM10-Regular.otf },
332 sans~ font = { NewCMSans10-Regular.otf },
333 mono~ font = { NewCMMono10-Regular.otf },
334 math = { NewCMMath-Regular.otf },
335 math~ bold = { NewCMMath-Bold.otf }
336 }
337 }

33

(End of definition for newcm regular. This function is documented on page 6.)

newcm regular sans This is a .meta:n key that sets the default fonts to the regular sans variant of the New
Computer Modern family.
338

339 \keys_define:nn { lngx_keys } {
340 newcm~ regular~ sans
341 .meta:n = {
342 main~ font = { NewCMSans10-Regular.otf },
343 sans~ font = { NewCMSans10-Regular.otf },
344 mono~ font = { NewCMMono10-Regular.otf },
345 math = { NewCMMath-Regular.otf },
346 math~ bold = { NewCMMath-Bold.otf }
347 }
348 }

(End of definition for newcm regular sans. This function is documented on page 6.)

newcm regular mono This is a .meta:n key that sets the default fonts to the regular monospaced variant of
the New Computer Modern family.
349

350 \keys_define:nn { lngx_keys } {
351 newcm~ regular~ mono
352 .meta:n = {
353 main~ font = { NewCMMono10-Regular.otf },
354 sans~ font = { NewCMSans10-Regular.otf },
355 mono~ font = { NewCMMono10-Regular.otf },
356 math = { NewCMMath-Regular.otf },
357 math~ bold = { NewCMMath-Bold.otf },
358 }
359 }

(End of definition for newcm regular mono. This function is documented on page 6.)
Then we load the bourbaki's empty set boolean. This gets read later while setting

the math font.
360

361 \lngx_set_keys:n {
362 bourbaki's~ empty~ set,

Then we load the old style numbers boolean.
363 old~ style~ numbers,
364 newcm
365 }

\lngx_set_main_font:nn
\lngx_set_sans_font:nn
\lngx_set_mono_font:nn
\lngx_set_math_font:nn

If LinguisTiX-languages package is loaded, I load the fonts with \babelfont command.
In case it is not loaded, the fonts are set with \setxxxxcommand-type commands provided
by fontspec.
366

367 \IfPackageLoadedF { linguistix-languages } {
368 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
369 \setmainfont [#1] { #2 }
370 }
371 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
372 \setsansfont [#1] { #2 }

34

373 }
374 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
375 \setmonofont [#1] { #2 }
376 }
377 }

A wrapper command is provided for loading math fonts.
378

379 \cs_new_protected:Npn \lngx_set_math_font:nn #1#2 {
380 \setmathfont [#1] { #2 }
381 }

382

383 \cs_new_protected:Npn \lngx_set_math_bold_font:nn #1#2 {
384 \IfPackageLoadedT { lua-unicode-math } {
385 \DeclareMathVersion { bold }
386 }
387 \setmathfont [
388 #1,
389 version = { bold }
390] { #2 }
391 }

All of these commands should expand their arguments, so I provide the appropriate
variants.
392

393 \cs_generate_variant:Nn \lngx_set_main_font:nn { VV }
394 \cs_generate_variant:Nn \lngx_set_sans_font:nn { VV }
395 \cs_generate_variant:Nn \lngx_set_mono_font:nn { VV }
396 \cs_generate_variant:Nn \lngx_set_math_font:nn { VV }
397 \cs_generate_variant:Nn \lngx_set_math_bold_font:nn { VV }

(End of definition for \lngx_set_main_font:nn and others. These functions are documented on page 20.)

__lngx_build_main_font_features:
__lngx_build_sans_font_features:
__lngx_build_mono_font_features:
__lngx_build_math_font_features:

__lngx_build_bold_math_font_features:
\g__lngx_text_main_font_features_tl
\g__lngx_text_sans_font_features_tl
\g__lngx_text_mono_font_features_tl

\g__lngx_math_font_features_tl
\g__lngx_bold_math_font_features_tl

These are some internal functions that basically iterate on the prop list items and each of
them is put to the right of the respective token list. This way only the functions that are
added by the user are exported to the font setting command.
398

399 \clist_map_inline:nn {
400 main,
401 sans,
402 mono
403 } {
404 \cs_new_protected:cpn {
405 __lngx_build_ #1 _font_features:
406 } {
407 \prop_map_inline:cn { g__lngx_text_ #1 _fonts_prop } {
408 \tl_gput_right:cn {
409 g__lngx_text_ #1 _font_features_tl
410 } { ####2 }
411 }
412 }
413 }
414

415 \cs_new_protected:Npn __lngx_build_math_features: {

35

416 \prop_map_inline:Nn \g__lngx_math_fonts_prop {
417 \tl_gput_right:Nn \g__lngx_math_features_tl {
418 { ##2 }
419 }
420 }
421 }
422

423 \cs_new_protected:Npn __lngx_build_math_bold_features: {
424 \prop_map_inline:Nn \g__lngx_math_bold_fonts_prop {
425 \tl_gput_right:Nn \g__lngx_math_bold_features_tl {
426 { ##2 }
427 }
428 }
429 }

(End of definition for __lngx_build_main_font_features: and others.)
Now I start the pre-begindocument hook.
430

431 \hook_gput_code:nnn { begindocument / before } { . } {

If the boolean for old style numbers is true, I set the Numbers key to OldStyle. Similarly,
if the NewCM-specific old one is requested, I turn the character-variant on.
432 \lngx_set_keys:n {
433 text~ extra~
434 features = {
435 \bool_if:NT \g_lngx_old_style_bool {
436 Numbers = { OldStyle },
437 \bool_if:NT \g_lngx_old_style_one_bool {
438 CharacterVariant = { 6 }
439 }
440 }
441 },
442 text~ sans~ extra~
443 features = {
444 \bool_if:NT \g_lngx_old_style_bool {
445 Numbers = { OldStyle },
446 \bool_if:NT \g_lngx_old_style_one_bool {
447 CharacterVariant = { 6 }
448 }
449 }
450 }
451 }

All the font features are built using the internal functions and then fonts are set.
452 __lngx_build_main_font_features:
453 \lngx_set_main_font:VV
454 \g__lngx_text_main_font_features_tl
455 \g__lngx_text_main_font_tl
456 __lngx_build_sans_font_features:
457 \lngx_set_sans_font:VV
458 \g__lngx_text_sans_font_features_tl
459 \g__lngx_text_sans_font_tl
460 __lngx_build_mono_font_features:
461 \lngx_set_mono_font:VV
462 \g__lngx_text_mono_font_features_tl

36

463 \g__lngx_text_mono_font_tl
464 __lngx_build_math_features:
465 \lngx_set_math_font:VV \g__lngx_math_features_tl
466 \g__lngx_math_font_tl
467 \IfPackageLoadedT { unicode-math } {
468 __lngx_build_math_bold_features:
469 \lngx_set_math_bold_font:VV
470 \g__lngx_math_bold_features_tl
471 \g__lngx_math_bold_font_tl
472 }
473 }
474 ⟨/font⟩

37

LinguisTiX-glossing Documentation | LATEX3-interface

475 ⟨∗glossing⟩
476 \ProvidesExplPackage{linguistix-glossing}
477 {2026-02-02}
478 {v0.8}
479 {%
480 Accessible glossing with LinguisTiX%
481 }

In order to print the multi-column glossary, I load the \multicol package.
482

483 \IfPackageLoadedF { multicol } {
484 \RequirePackage { multicol }
485 }

Then I declare some variables that will be used for generating the glossing-auxiliary.
486

487 \bool_new:N \l_lngx_expansion_bool
488 \tl_clear_new:N \l_lngx_gloss_separator_tl
489 \tl_clear_new:N \l_lngx_expansion_separator_tl
490 \tl_clear_new:N \l_lngx_glossary_separator_tl
491 \dim_zero_new:N \l_lngx_i_have_dim
492 \dim_zero_new:N \l_lngx_i_need_dim
493 \dim_zero_new:N \l_lngx_remain_dim
494 \dim_zero_new:N \l_lngx_i_hack_dim
495 \int_gzero_new:N \g__lngx_page_ref_int
496 \str_clear_new:N \l_lngx_gls_language_str
497 \str_clear_new:N \l__lngx_gls_sorting_order_str
498 \str_clear_new:N \l__lngx_gls_expansion_case_str
499 \str_clear_new:N \l__lngx_glossary_style_str
500 \str_clear_new:N \l__lngx_separator_str
501 \seq_gclear_new:N \g__lngx_gls_use_order_seq
502

503 \str_set:Nn \l__lngx_separator_str { gloss }

Glossaries are hyperlinked with complex and cryptic labels. Some readers read the labels
loudly when using assistive technology. In order to dodge that, I add the text to the
Contents key. It uses Ulrike’s ideas: tex.stackexchange.com/a/758083/174620.
504

505 \IfPDFManagementActiveT {
506 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
507 \socket_new_plug:nnn { hyp / link / GoTo / Contents }
508 { text } {
509 \pdfstringdef __lngx_tmp_text: { #2 }
510 \pdfannot_dict_put:nne { link / GoTo } { Contents } {
511 (__lngx_tmp_text:)
512 }
513 }
514 }
515 }

After these initial declarations, I move to the socket that controls the description of the
gloss. The socket itself has no arguments.
516

517 \socket_new:nn { lngx / description / gloss } { 0 }

38

tex.stackexchange.com/a/758083/174620

__lngx_gloss_description: When the socket is assigned the on plug, it defines the expandable internal command
for glossing description. It is then used inside the tagging socket. The same command
is made inactive when the socket is assigned the off plug. By default the off plug is
assigned (this is experimental and may change after reviews from the blind people). The
socket is activated by using it.
518

519 \socket_new_plug:nnn { lngx / description / gloss } { on } {
520 \cs_set:Npn __lngx_gloss_description: { Gloss~ }
521 }
522

523 \socket_new_plug:nnn { lngx / description / gloss }
524 { off } {
525 \cs_set_eq:NN __lngx_gloss_description: \prg_do_nothing:
526 }
527

528 \socket_assign_plug:nn { lngx / description / gloss }
529 { off }
530

531 \socket_use:n { lngx / description / gloss }

(End of definition for __lngx_gloss_description:.)
Then I declare the tagging socket for glossing which takes two arguments. It should
follow the default tagging which is why I use the default plug (which is the only
plug the package does and will offer). The code is based on suggestions by Ulrike
Fischer (github.com/latex3/tagging-project/discussions/975). The E tag is used
for ‘expansion’ which more or less suits the nature of glosses. So it is used here. The
command __lngx_gloss_description: is controlled by the socket and is expandable.
532

533 \NewTaggingSocket { lngx / gloss } { 2 }
534

535 \NewTaggingSocketPlug { lngx / gloss } { default } {
536 \mode_leave_vertical:
537 \tag_mc_end:
538 \exp_args:Ne
539 \tag_struct_begin:n {
540 tag = { Span },
541 E = {
542 __lngx_gloss_description: #2
543 }
544 }
545 \tag_mc_begin:n {
546 tag = { Span }
547 }

The argument is printed with the package-controlled formatting command. First I check
if the hyperref package is loaded. If it is loaded, the link colour is changed to the one
stored in the variable \g_lngx_gloss_link_color_str (black, by default).
548 \IfPackageLoadedTF { hyperref } {
549 \group_begin:
550 \str_clear:N \l_tmpa_str
551 \str_set:Nn \l_tmpa_str { #1 }
552 \exp_args:Ne \hypersetup {
553 linkcolor = {

39

github.com/latex3/tagging-project/discussions/975

554 \exp_not:V \g__lngx_gloss_link_color_str
555 }
556 }

The socket for adding text into the Contents directory is used here.
557 \IfPDFManagementActiveT {
558 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
559 \socket_assign_plug:nn {
560 hyp / link / GoTo / Contents
561 } { text }
562 }
563 }
564 \lngx_gloss_format:n {
565 \hyperlink { lngx_ #1 _glossary } { #1 }
566 }
567 \group_end:
568 } {

If hyperref is not loaded, the text is simply printed with the formatting command.
569 \lngx_gloss_format:n { #1 }
570 }
571 \tag_mc_end:
572 \tag_struct_end:
573 \tag_mc_begin:n { }
574 }

I assign the default tagging plug to the socket I just defined.
575

576 \AssignTaggingSocketPlug { lngx / gloss } { default }

format Now I define the key for adjusting the formatting of the glosses. It controls several keys
contained in a separate set. In short, this key will take another keys as arguments.
577

578 \keys_define:nn { lngx_glossing } {
579 format
580 .meta:nn = { lngx / gloss / format } { #1 },

(End of definition for format. This function is documented on page 9.)

link color
\g__lngx_gloss_link_color_str

This option sets the colour used for glossing links. It is set to black by default.
581 link~ color
582 .str_gset:N = \g__lngx_gloss_link_color_str,
583 link~ color
584 .initial:n = { black },

(End of definition for link color and \g__lngx_gloss_link_color_str. This function is documented on
page 9.)

sort
\l__lngx_gls_sorting_order_str

Glosses can be sorted alphabetically or as they are used. The choice key for that is as
follows. By default glosses are sorted alphabetically.
585 sort
586 .choices:nn = { alphabetical, use } {
587 \str_set_eq:NN \l__lngx_gls_sorting_order_str
588 \l_keys_choice_str
589 },
590 sort
591 .initial:n = { alphabetical },

40

(End of definition for sort and \l__lngx_gls_sorting_order_str. This function is documented on page 9.)

expansion case
\l__lngx_gls_expansion_case_str

The expansion can be printed in lower case, title case (with the first letter capitalised for
all the words) or title case (with the first letter capitalised only for the first word). The
default is lower case.
592 expansion~ case
593 .choices:nn = {
594 lowercase, title~ case~ all, title~ case~ first
595 } {
596 \str_set_eq:NN \l__lngx_gls_expansion_case_str
597 \l_keys_choice_str
598 },
599 expansion~ case
600 .initial:n = { lowercase },

(End of definition for expansion case and \l__lngx_gls_expansion_case_str. This function is documented
on page 9.)

style
\l__lngx_glossary_style_str

The glossary can be printed in two styles given below. The default is block.
601 style
602 .choices:nn = { block, inline } {
603 \str_set_eq:NN \l__lngx_glossary_style_str
604 \l_keys_choice_str
605 },
606 style
607 .initial:n = { block },

(End of definition for style and \l__lngx_glossary_style_str. This function is documented on page 9.)

columns
\l__lngx_glossary_columns_int

There is an option to change the number of columns used for printing the glossary. It is
controlled here. Default is 2.
608 columns
609 .int_set:N = \l__lngx_glossary_columns_int,
610 columns
611 .initial:n = { 2 },

(End of definition for columns and \l__lngx_glossary_columns_int. This function is documented on page
10.)

page numbers
\l__lngx_glosses_page_number_bool

Page numbers can be turned off with the following boolean. By default, they are active.
612 page~ numbers
613 .bool_set:N =
614 \l__lngx_glosses_page_number_bool,
615 page~ numbers
616 .initial:n = { true },

(End of definition for page numbers and \l__lngx_glosses_page_number_bool. This function is documented
on page 10.)

sectioning
\l__lngx_gls_sectioning_str

The section used for printing the glossary title is controlled by the following command.
By default, I use \section for printing the title.

617 sectioning
618 .str_set:N = \l__lngx_gls_sectioning_str,
619 sectioning
620 .initial:n = { section },

41

(End of definition for sectioning and \l__lngx_gls_sectioning_str. This function is documented on page
10.)

section number
\l__lngx_gls_section_number_bool

This controls if the sectioning level should be numbered or unnumbered. The default is
false.
621 section~ number
622 .bool_set:N = \l__lngx_gls_section_number_bool,
623 section~ number
624 .initial:n = { false },

(End of definition for section number and \l__lngx_gls_section_number_bool. This function is documented
on page 10.)

no bold
\l__lngx_gls_bold_bool

The no bold key is defined as an inverse boolean. By default the key is set to false
(resulting in the controlled boolean being true).

625 no~ bold
626 .bool_set_inverse:N = \l__lngx_gls_bold_bool,
627 no~ bold
628 .initial:n = { false },

(End of definition for no bold and \l__lngx_gls_bold_bool. This function is documented on page 10.)

separator
\l__lngx_separator_tl

The separator between the glosses is controlled using this key. It controls the separator
for inline glosses, expansion of glosses as well as glosses seen in the glossary. Each of these
functions set a string variable which is expanded when this key is used. The default value
of the string variable is gloss and the default value for this key is ,~, which means by
default the separator between glosses is a comma followed by a space.
629 separator
630 .code:n = {
631 \tl_set:cn {
632 l_lngx_
633 \str_use:N \l__lngx_separator_str
634 _separator_tl
635 } { #1 }
636 },
637 separator
638 .initial:n = { ,~ },

(End of definition for separator and \l__lngx_separator_tl. This function is documented on page 10.)

entry separator
\l__lngx_entry_separator_tl

The separator between glossary entries is controlled using this key. The default is a \par
token.
639 entry~ separator
640 .tl_set:N = \l__lngx_entry_separator_tl,
641 entry~ separator
642 .initial:n = { \par }
643 }

(End of definition for entry separator and \l__lngx_entry_separator_tl. This function is documented
on page 10.)
Sometimes language-specific settings are needed. I define the language string variable
with the information retrieved from the lang key of the PDF.
644

645 \IfPDFManagementActiveT {

42

646 \str_set:Ne \l_lngx_gls_language_str {
647 \GetDocumentProperties { document / lang }
648 }
649 }

gloss
\lngx_gloss_format:n

The formatting of glosses is defined here. By default they are printed in small caps.
650

651 \keys_define:nn { lngx / gloss / format } {
652 gloss
653 .cs_gset_protected:Np = \lngx_gloss_format:n #1,
654 gloss
655 .initial:n = { \textsc { #1 } },

(End of definition for gloss and \lngx_gloss_format:n. These functions are documented on page 9.)

expansion
\lngx_expansion_format:n

The formatting of expansions is defined here. There is no change in the printing in the
defaults.
656 expansion
657 .cs_gset_protected:Np = \lngx_expansion_format:n #1,
658 expansion
659 .initial:n = { #1 }
660 }

(End of definition for expansion and \lngx_expansion_format:n. These functions are documented on page
9.)

\setupglossing A wrapper around these options is provided.
661

662 \NewDocumentCommand \setupglossing { m } {
663 \keys_set:nn { lngx_glossing } { #1 }
664 }

(End of definition for \setupglossing. This function is documented on page 9.)

\newgloss
\lngx_gloss_new:nn

A function that creates new glosses starts here. It takes 2 arguments.
665

666 \cs_new_protected:Npn \lngx_gloss_new:nn #1#2 {

First and foremost, the string received as the first argument should change its case to
lowercase. It is done by \str_lowercase:n. I will use a temporary string variable for
storing the converted value. This needs to be done locally so I start a group and clear the
local str variable.
667 \group_begin:
668 \str_clear:N \l_tmpa_str
669 \str_set:Ne \l_tmpa_str { \str_lowercase:n { #1 } }

Every gloss has its expansion stored in a token list associated to it. The token list is
declared here and it is set to the expansion (i.e., #2).
670 \tl_gclear_new:c {
671 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
672 }
673 \seq_gclear_new:c {
674 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
675 }
676 \tl_gset:cn {
677 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
678 } { #2 }

43

Whenever a gloss is defined, an internal protected command is defined. It doesn’t take
any argument.
679 \cs_new_protected:cpn {
680 __lngx_gloss_ \str_use:N \l_tmpa_str :
681 } {

The arguments are passed to the tagging socket. Since the tagging socket doesn’t expand
everything, an exhaustive expansion is performed with the help of \exp_args:Nee. This
is done only if the \DocumentMetadata command is used.
682 \IfDocumentMetadataTF {
683 \exp_args:Nee \UseTaggingSocket
684 { lngx / gloss }
685 { \str_use:N \l_tmpa_str }
686 { #2 }
687 } {
688 \IfPackageLoadedTF { hyperref } {
689 \group_begin:
690 \exp_args:Ne \hypersetup {
691 linkcolor = {
692 \exp_not:V \g__lngx_gloss_link_color_str
693 }
694 }
695 \IfPDFManagementActiveT {
696 \socket_if_exist:nT {
697 hyp / link / GoTo / Contents
698 } {
699 \socket_assign_plug:nn {
700 hyp / link / GoTo / Contents
701 } { text }
702 }
703 }
704 \lngx_gloss_format:n {
705 \hyperlink { lngx_ #1 _glossary } { #1 }
706 }
707 \group_end:
708 } {
709 \lngx_gloss_format:n { #1 }
710 }
711 }

I use \label-\ref mechanism for saving the page numbers of the glosses. An internal
integer called \g__lngx_page_ref_int is used to generate unique numbers. The kernel
provides \seq_remove_duplicates:N, but as it iterates on each and every item, it is slow.
The duplicates can be avoided if the items are added to the sequence conditionally and
only when they don’t exist already in the sequence. This way duplicates are not generated
at all. This method is used for adding to the sequences that respectively store the page
numbers of glosses and the order in which they were used. Imagine if a gloss is used twice
on a page, it doesn’t make sense to add the same page number twice. Similarly, if a gloss
is used, it is added to the sequence of used glosses. It doesn’t make sense to add it 10
times again and removing the 9 duplicates later.

712 \int_gincr:N \g__lngx_page_ref_int
713 \exp_args:Ne
714 \label { lngx_gloss_ \int_use:N \g__lngx_page_ref_int }
715 \cs_if_exist:cT {

44

716 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int
717 } {
718 \group_begin:
719 \tl_clear:N \l_tmpa_tl
720 \tl_set:Ne \l_tmpa_tl {
721 \exp_not:N \use_ii:nnnnn
722 \use:c {
723 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int
724 }
725 }
726 \seq_if_in:cVF {
727 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
728 } \l_tmpa_tl {
729 \seq_gput_right:ce {
730 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
731 } {
732 \exp_not:N \use_ii:nnnnn
733 \use:c {
734 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int
735 }
736 }
737 }
738 \group_end:
739 }
740 \seq_if_in:NeF \g__lngx_gls_use_order_seq {
741 \str_use:N \l_tmpa_str
742 } {
743 \seq_gput_right:Ne \g__lngx_gls_use_order_seq
744 { \str_use:N \l_tmpa_str }
745 }
746 }
747 \group_end:
748 }
749

750 \cs_gset_eq:NN \newgloss \lngx_gloss_new:nn

(End of definition for \newgloss and \lngx_gloss_new:nn. These functions are documented on page 8.)

\renewgloss Implementing the \renewgloss command is actually quite easy. The definition of \lngx_-
gloss_new:nn uses only a single command that errors if the control sequence is already
defined, i.e., \cs_new_protected:cpn. In order to renew a gloss, simply undefining the
existing command declared with \lngx_gloss_new:nn suffices. Later the arguments are
passed to the same command again. No LATEX3 equivalent for this is provided.

751

752 \NewDocumentCommand \renewgloss { m m } {
753 \cs_undefine:c { __lngx_gloss_ #1 : }
754 \lngx_gloss_new:nn { #1 } { #2 }
755 }

(End of definition for \renewgloss. This function is documented on page 8.)

\glx The command to use a gloss takes three arguments where the first is an optional asterisk.
If it is used, the expansion of the gloss is printed without any special tags, just as plain text.
Otherwise the internal command for printing the gloss is used with the third argument.

45

The third argument is a clist. Any number of glosses can be added to the list. The
action is then repeated on each and every item of the list. The second argument is a
list of options for customising the output. Everything is computed locally so that for
the settings don’t leak. I perform the action on the first item as desired, then the same
is applied to the remaining items with a preceding separator. So that all the items are
separated properly.
756

757 \NewDocumentCommand \glx { s O{ } m } {
758 \group_begin:
759 \IfBooleanT { #1 } {
760 \bool_set_true:N \l_lngx_expansion_bool
761 \str_set:Nn \l__lngx_separator_str { expansion }
762 \keys_set:nn { lngx_glossing } {
763 separator = { , \c_space_tl }
764 }
765 }
766 \keys_set:nn { lngx_glossing } { #2 }
767 \tl_clear:N \l_tmpa_tl
768 \seq_clear:N \l_tmpa_seq
769 \seq_set_from_clist:Nn \l_tmpa_seq { #3 }
770 \seq_pop_left:NN \l_tmpa_seq \l_tmpa_tl
771 \str_set:Ne \l_tmpa_str {
772 \exp_args:Ne \str_lowercase:n {
773 \tl_use:N \l_tmpa_tl
774 }
775 }
776 \bool_if:NTF \l_lngx_expansion_bool {
777 \str_case:Vn \l__lngx_gls_expansion_case_str {
778 { lowercase } {
779 \text_lowercase:n {
780 \tl_use:c {
781 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
782 }
783 }
784 }
785 { title~ case~ all } {
786 \text_titlecase_all:n {
787 \tl_use:c {
788 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
789 }
790 }
791 }
792 { title~ case~ first } {
793 \text_titlecase_first:n {
794 \tl_use:c {
795 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
796 }
797 }
798 }
799 }
800 } {
801 \use:c { __lngx_gloss_ \str_use:N \l_tmpa_str : }
802 }

46

803 \seq_if_empty:NF \l_tmpa_seq {
804 \seq_map_inline:Nn \l_tmpa_seq {
805 \group_begin:
806 \str_clear:N \l_tmpa_str
807 \str_set:Ne \l_tmpa_str {
808 \exp_args:Ne \str_lowercase:n { ##1 }
809 }
810 \bool_if:NTF \l_lngx_expansion_bool {
811 \str_case:Vn \l__lngx_gls_expansion_case_str {
812 { lowercase } {
813 \tl_use:N \l_lngx_expansion_separator_tl
814 \text_lowercase:n {
815 \tl_use:c {
816 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
817 }
818 }
819 }
820 { title~ case~ all } {
821 \tl_use:N \l_lngx_expansion_separator_tl
822 \text_titlecase_all:n {
823 \tl_use:c {
824 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
825 }
826 }
827 }
828 { title~ case~ first } {
829 \tl_use:N \l_lngx_expansion_separator_tl
830 \text_titlecase_first:n {
831 \tl_use:c {
832 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
833 }
834 }
835 }
836 }
837 } {
838 \tl_use:N \l_lngx_gloss_separator_tl
839 \use:c { __lngx_gloss_ \str_use:N \l_tmpa_str : }
840 }
841 \group_end:
842 }
843 }
844 \group_end:
845 }

(End of definition for \glx. This function is documented on page 8.)

__lngx_dotfill:nnn For the dotfill between the gloss and the expansion, I create a custom internal command.
The code is based on user Jonathan P. Spratte’s answer seen here: topanswers.xyz/tex?
q=8155#a7758. The dotfill should not be tagged at all and in fact it should be suppressed
so that the readers don’t go ‘dot, dot, dot, dot …’ (Frank has convinced us forever with
his TUG 2025 talk).
846

847 \cs_new_protected:Npn __lngx_dotfill:nnn #1#2#3 {
848 %% Courtesy: Jonathan P. Spratte

47

topanswers.xyz/tex?q=8155#a7758
topanswers.xyz/tex?q=8155#a7758

849 %% topanswers.xyz/tex?q=8155#a7758 (LPPL)
850 \l__lngx_entry_separator_tl
851 \smallskip
852 \group_begin:
853 \rightskip = 0pt plus -1fil \prg_do_nothing:
854 \parfillskip = 0pt plus 1fil \prg_do_nothing:
855 \leftskip = 1em plus 1fil \prg_do_nothing:
856 \finalhyphendemerits = 0 \prg_do_nothing:
857 \parindent = -1em \prg_do_nothing:
858 \bool_if:NT \l__lngx_gls_bold_bool { \textbf } {
859 \lngx_gloss_format:n {
860 #1
861 }
862 \tl_use:N \l_lngx_glossary_separator_tl
863 }
864 #2
865 \leavevmode
866 \quad
867 \IfDocumentMetadataT {
868 \tag_mc_end:
869 \tag_struct_begin:n {
870 tag = { Span },
871 actualtext = { }
872 }
873 \tag_mc_begin:n {
874 tag = { Span }
875 }
876 }
877 \cleaders
878 \hbox to 0.44em { \hss . \hss }
879 \hskip 0.5cm plus 1fill \prg_do_nothing:
880 \IfDocumentMetadataT {
881 \tag_mc_end:
882 \tag_struct_end:
883 \tag_mc_begin:n { }
884 }
885 \quad
886 \kern 0pt \prg_do_nothing:
887 \em #3
888 \l__lngx_entry_separator_tl
889 \group_end:
890 }

(End of definition for __lngx_dotfill:nnn.)

lngx_multicols Here I define the custom multicolumn environment which does nothing if the number of
columns is 1.
891

892 \NewDocumentEnvironment { lngx_multicols } { m } {
893 \int_compare:nNnTF { 1 } < {
894 \int_use:N \l__lngx_glossary_columns_int
895 } {
896 \begin { multicols } {
897 \int_use:N \l__lngx_glossary_columns_int

48

898 } [#1]
899 } { #1 }
900 \noindent
901 } {
902 \int_compare:nNnT { 1 } < {
903 \int_use:N \l__lngx_glossary_columns_int
904 } {
905 \end { multicols }
906 }
907 }

(End of definition for lngx_multicols. This function is documented on page 20.)

\lngx_gloss_list: Finally we come to the command that prints the glosses. First it sets the boolean for
creating the aux file to false.
908

909 \cs_new_protected:Npn \lngx_gloss_list: {
910 \bool_gset_false:N \g_lngx_trigger_aux_file_bool

I start a group, clear a scratch sequence and set it equal to the sequence that stores the
order of the glosses. If the aux file is read, the aux flag is added to the variable, or else it
is read on the fly.

911 \group_begin:
912 \seq_clear:N \l_tmpa_seq
913 \seq_set_eq:NN \l_tmpa_seq \g__lngx_gls_use_order_seq

If the sorting order is set to alphabetical, the sequence needs to get sorted. For that, I
use LATEX3’s mechanism for sorting strings.

914 \str_case:Vn \l__lngx_gls_sorting_order_str {
915 { alphabetical } {
916 \seq_sort:Nn \l_tmpa_seq {
917 \str_compare:nNnTF { ##1 } > { ##2 } {
918 \sort_return_swapped:
919 } {
920 \sort_return_same:
921 }
922 }
923 }
924 }

If the style used is inline, the glosses come after the each other. That means the default
entry separator, i.e., \par must be changed. Here I set it to ,~ by default (locally). The
separator between the gloss and the entry is defined as a colon followed by a space.
925 \str_if_eq:VnTF \l__lngx_glossary_style_str { inline } {
926 \group_begin:
927 \keys_set:nn { lngx_glossing } {
928 separator = { \c_colon_str \c_space_tl },
929 entry~ separator = { ,~ }
930 }

Then each item from the sequence is popped (from the left). It is then passed to a string
variable to get rid of the catcodes. The string variable is then used in \MakeLinkTarget*.
The gloss is then printed with its separator in bold shape.

931 \tl_clear:N \l_tmpa_tl
932 \str_clear:N \l_tmpa_str

49

933 \seq_pop_left:NN \l_tmpa_seq \l_tmpa_tl
934 \str_set:NV \l_tmpa_str \l_tmpa_tl
935 \tag_mc_end:
936 \tag_struct_begin:n {
937 tag = { Span },
938 }
939 \tag_mc_begin:n {
940 tag = { Span }
941 }
942 \MakeLinkTarget * {
943 lngx_ \str_use:N \l_tmpa_str _glossary
944 }
945 \bool_if:NT \l__lngx_gls_bold_bool { \textbf } {
946 \lngx_gloss_format:n {
947 \tl_use:N \l_tmpa_tl
948 \tl_use:N \l_lngx_glossary_separator_tl
949 }
950 }
951 \tag_mc_end:
952 \tag_struct_end:

Then it is checked in which case the expansion is requested. According to that the tl is
printed.
953 \str_case:Vn \l__lngx_gls_expansion_case_str {
954 { lowercase } {
955 \lngx_expansion_format:n {
956 \text_lowercase:n {
957 \tl_use:c {
958 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
959 }
960 }
961 }
962 }
963 { title~ case~ all } {
964 \lngx_expansion_format:n {
965 \text_titlecase_all:n {
966 \tl_use:c {
967 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
968 }
969 }
970 }
971 }
972 { title~ case~ first } {
973 \lngx_expansion_format:n {
974 \text_titlecase_first:n {
975 \tl_use:v {
976 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
977 }
978 }
979 }
980 }
981 }

After printing one entry successfully, if there are any more items left in the sequence, they
are printed with the same method, but with an entry separator at the beginning.

50

982 \seq_if_empty:NF \l_tmpa_seq {
983 \seq_map_inline:Nn \l_tmpa_seq {
984 \group_begin:
985 \tl_use:N \l__lngx_entry_separator_tl
986 \MakeLinkTarget * { lngx_ ##1 _glossary }
987 \textbf {
988 \lngx_gloss_format:n {
989 ##1
990 \tl_use:N \l_lngx_glossary_separator_tl
991 }
992 }
993 \str_case:Vn \l__lngx_gls_expansion_case_str {
994 { lowercase } {
995 \lngx_expansion_format:n {
996 \text_lowercase:n {
997 \exp_not:v { g_lngx_ ##1 _expansion_tl }
998 }
999 }
1000 }
1001 { title~ case~ all } {
1002 \lngx_expansion_format:n {
1003 \text_titlecase_all:n {
1004 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1005 }
1006 }
1007 }
1008 { title~ case~ first } {
1009 \lngx_expansion_format:n {
1010 \text_titlecase_first:n {
1011 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1012 }
1013 }
1014 }
1015 }
1016 \group_end:
1017 }
1018 }
1019 \group_end:
1020 } {

If the style is not inline, then the default block style is assumed and firstly the word
‘glossary’ is printed in a sectioning command controlled by the keys. The \glossaryname
command is provided by babel. If it is undefined, that means the user hasn’t loaded babel.
In that case, I define the command with the string Glossary.
1021 \ProvideDocumentCommand \glossaryname { } { Glossary }

Then the lngx_multicols environment starts which doesn’t do anything if the number
of columns is 1.
1022 \begin { lngx_multicols } {
1023 \str_if_eq:VnF \l__lngx_gls_sectioning_str { null } {
1024 \use:e {
1025 \exp_not:N \use:c
1026 { \str_use:N \l__lngx_gls_sectioning_str }
1027 \bool_if:NF \l__lngx_gls_section_number_bool { * }
1028 { \exp_not:N \glossaryname }

51

1029 }
1030 }
1031 }
1032 \seq_map_inline:Nn \l_tmpa_seq {

In this style, even the page numbers are printed along with glosses. We save the page
numbers in a temporary sequence which is locally cleared.
1033 \group_begin:
1034 \seq_clear:N \l_tmpb_seq
1035 \seq_map_inline:cn { g_lngx_ ##1 _pages_seq } {

The pages are hyperlinked with the internal PDF names.
1036 \seq_put_right:Ne \l_tmpb_seq { ####1 }
1037 }

The page numbers are separated using dotfill. Before the glosses, \MakeLinkTarget* is
used.
1038 __lngx_dotfill:nnn {
1039 \MakeLinkTarget * { lngx_ ##1 _glossary }
1040 ##1
1041 } {

The case of expansion is checked and then the appropriate casing commands are used for
expansions.
1042 \str_case:Vn \l__lngx_gls_expansion_case_str {
1043 { lowercase } {
1044 \lngx_expansion_format:n {
1045 \text_lowercase:n {
1046 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1047 }
1048 }
1049 }
1050 { title~ case~ all } {
1051 \lngx_expansion_format:n {
1052 \text_titlecase_all:n {
1053 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1054 }
1055 }
1056 }
1057 { title~ case~ first } {
1058 \lngx_expansion_format:n {
1059 \text_titlecase_first:n {
1060 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1061 }
1062 }
1063 }
1064 }
1065 } {

The list of page numbers is printed.
1066 \seq_use:Nn \l_tmpb_seq { ,~ }
1067 }
1068 \group_end:
1069 }
1070 \end { lngx_multicols }
1071 }

52

1072 \group_end:
1073 }

(End of definition for \lngx_gloss_list:. This function is documented on page 20.)

\listofglosses Here is the command that defines the user-side command for printing the glosses. It
defines the separator by default if not provided. All settings are local in order to avoid
leaking. \l_lngx_separator_tl is the generic string that is used inside the separator
key that sets the separator contextually. This command uses the LATEX3 function for
printing the glosses.
1074

1075 \NewDocumentCommand \listofglosses { O { } } {
1076 \group_begin:
1077 \str_set:Nn \l__lngx_separator_str { glossary }
1078 \keys_set:nn { lngx_glossing } {
1079 separator = { \c_colon_str \c_space_tl }
1080 }
1081 \keys_set:nn { lngx_glossing } { #1 }
1082 \lngx_gloss_list:
1083 \group_end:
1084 }
1085 ⟨/glossing⟩

(End of definition for \listofglosses. This function is documented on page 8.)

53

LinguisTiX-ipa Documentation | LATEX3-interface

1086 ⟨∗ipa⟩
1087 \ProvidesExplPackage{linguistix-ipa}
1088 {2026-02-02}
1089 {v0.8}
1090 {%
1091 A package for typesetting the IPA
1092 (International Phonetic Alphabet) from
1093 the ‘LinguisTiX’ bundle.%
1094 }

Then, I load unicode-math or lua-unicode-math (depending on the engine used), LinguisTiX-
nfss and LinguisTiX-base (if they are not already loaded).
1095

1096 \sys_if_engine_luatex:TF {
1097 \IfPackageLoadedF { unicode-math } {
1098 \IfPackageLoadedF { lua-unicode-math } {
1099 \RequirePackage { fontspec, lua-unicode-math }
1100 }
1101 }
1102 } {
1103 \IfPackageLoadedF { unicode-math } {
1104 \RequirePackage { unicode-math }
1105 }
1106 }
1107

1108 \IfPackageLoadedF { linguistix-base } {
1109 \RequirePackage { linguistix-base }
1110 }
1111

1112 \IfPackageLoadedF { linguistix-nfss } {
1113 \RequirePackage { linguistix-nfss }
1114 }
1115

1116 \IfPackageLoadedF { linguistix-fixpex } {
1117 \RequirePackage { linguistix-fixpex }
1118 }

\ipatext
\ipatext*

The \ipatext command along with its starred variant is developed here.
1119

1120 \NewDocumentCommand \ipatext { s m } {
1121 \IfBooleanTF { #1 } {
1122 {
1123 \lngxipa
1124 / #2 /
1125 }
1126 } {
1127 {
1128 \lngxipa
1129 [#2]
1130 }
1131 }
1132 }

(End of definition for \ipatext and \ipatext*. These functions are documented on page 11.)

54

\g__lngx_ipa_main_fonts_prop
\g__lngx_ipa_main_font_features_tl

ipa upright
ipa upright features

ipa bold upright
ipa bold upright features

ipa italic
ipa italic features

ipa bold italic
ipa bold italic features

ipa slanted
ipa slanted features

ipa bold slanted
ipa bold slanted features

ipa swash
ipa swash features

ipa bold swash
ipa bold swash features

ipa small caps
ipa small caps features

These variables store the values for fonts and features for the serif IPA.
1133

1134 \prop_gclear_new:N \g__lngx_ipa_main_fonts_prop
1135 \tl_gclear_new:N \g__lngx_ipa_main_font_features_tl
1136

1137 \clist_map_inline:nn {
1138 upright,
1139 bold~ upright,
1140 italic,
1141 bold~ italic,
1142 slanted,
1143 bold~ slanted,
1144 swash,
1145 bold~ swash,
1146 small~ caps
1147 } {

All the keys here are prefixed with the word ipa in order to distinguish them from the
keys provided by the LinguisTiX-fonts package. These keys have identical method as
their text counterparts, though.
1148 \keys_define:nn { lngx_keys } {
1149 ipa~ #1
1150 .code:n = {
1151 \group_begin:
1152 \str_clear:N \l_tmpa_str
1153 \str_set:Ne \l_tmpa_str {
1154 \text_titlecase_all:n { #1 }
1155 Font
1156 }
1157 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1158 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
1159 { ipa~ #1 }
1160 { \str_use:N \l_tmpa_str = { ##1 } }
1161 \group_end:
1162 },
1163 ipa~ #1~ features
1164 .code:n = {
1165 \group_begin:
1166 \str_clear:N \l_tmpa_str
1167 \str_set:Ne \l_tmpa_str {
1168 \text_titlecase_all:n { #1 }
1169 Features
1170 }
1171 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1172 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
1173 { ipa~ #1~ features }
1174 {
1175 \str_use:N \l_tmpa_str = { ##1 }
1176 }
1177 \group_end:
1178 }
1179 }
1180 }

55

(End of definition for \g__lngx_ipa_main_fonts_prop and others. These functions are documented on page
11.)

ipa extra features This key adds to the property that stores the extra features for the serif fonts.
1181

1182 \keys_define:nn { lngx_keys } {
1183 ipa~ extra~ features
1184 .prop_gput:N = \g__lngx_ipa_main_fonts_prop
1185 }

(End of definition for ipa extra features. This function is documented on page 13.)

56

\g__lngx_ipa_sans_fonts_prop
\g__lngx_ipa_sans_font_features_tl

\g__lngx_ipa_mono_fonts_prop
\g__lngx_ipa_mono_font_features_tl

ipa sans upright
ipa sans upright features

ipa sans bold upright
ipa sans bold upright features

ipa sans italic
ipa sans italic features

ipa sans bold italic
ipa sans bold italic features

ipa sans slanted
ipa sans slanted features

ipa sans bold slanted
ipa sans bold slanted features

ipa sans swash
ipa sans swash features

ipa sans bold swash
ipa sans bold swash features

ipa sans small caps
ipa sans small caps features

ipa mono upright
ipa mono upright features

ipa mono bold upright
ipa mono bold upright features

ipa mono italic
ipa mono italic features

ipa mono bold italic
ipa mono bold italic features

ipa mono slanted
ipa mono slanted features

ipa mono bold slanted
ipa mono bold slanted features

ipa mono swash
ipa mono swash features

ipa mono bold swash
ipa mono bold swash features

ipa mono small caps
ipa mono small caps features

Since the only difference between the upcoming keys is that of the word sans and mono,
we combine them together and use a nested clist. The rest of the mechanism is identical.
1186

1187 \prop_gclear_new:N \g__lngx_ipa_sans_fonts_prop
1188 \tl_gclear_new:N \g__lngx_ipa_sans_font_features_tl
1189 \prop_gclear_new:N \g__lngx_ipa_mono_fonts_prop
1190 \tl_gclear_new:N \g__lngx_ipa_mono_font_features_tl
1191

1192 \clist_map_inline:nn {
1193 sans,
1194 mono
1195 } {
1196 \clist_map_inline:nn {
1197 upright,
1198 bold~ upright,
1199 italic,
1200 bold~ italic,
1201 slanted,
1202 bold~ slanted,
1203 swash,
1204 bold~ swash,
1205 small~ caps
1206 } {
1207 \keys_define:nn { lngx_keys } {
1208 ipa~ #1~ ##1
1209 .code:n = {
1210 \group_begin:
1211 \str_clear:N \l_tmpa_str
1212 \str_set:Ne \l_tmpa_str {
1213 \text_titlecase_all:n { ##1 }
1214 Font
1215 }
1216 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1217 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1218 { ipa~ #1~ ##1 }
1219 { ####1 }
1220 \group_end:
1221 },
1222 ipa~ #1~ ##1~ features
1223 .code:n = {
1224 \group_begin:
1225 \str_clear:N \l_tmpa_str
1226 \str_set:Ne \l_tmpa_str {
1227 \text_titlecase_all:n { #1 }
1228 Features
1229 }
1230 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1231 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1232 { ipa~ #1~ ##1~ features }
1233 {
1234 \str_use:N \l_tmpa_str = { ####1 }
1235 }
1236 \group_end:
1237 }

57

1238 }
1239 }
1240 \keys_define:nn { lngx_keys } {
1241 ipa~ #1~ extra~ features
1242 .prop_gput:c = {
1243 g__lngx_ipa_ #1 _fonts_prop
1244 }
1245 }
1246 }

(End of definition for \g__lngx_ipa_sans_fonts_prop and others. These functions are documented on page
12.)

\g__lngx_ipa_main_font_tl
\g__lngx_ipa_sans_font_tl
\g__lngx_ipa_mono_font_tl

ipa main font
ipa sans font
ipa mono font

These keys provide keys to set fonts for IPA.
1247

1248 \clist_map_inline:nn {
1249 main,
1250 sans,
1251 mono
1252 } {
1253 \keys_define:nn { lngx_keys } {
1254 ipa~ #1~ font
1255 .tl_gset:c = { g__lngx_ipa_ #1 _font_tl }
1256 }
1257 }

(End of definition for \g__lngx_ipa_main_font_tl and others. These functions are documented on page 11.)

ipa newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families for
IPA. Stylistic set 5 of NewCM is dedicated to linguistics. So we use it here. For correct
diacritic placement, we need HarfBuzz renderer. That also is loaded here.
1258

1259 \keys_define:nn { lngx_keys } {
1260 ipa~ newcm
1261 .meta:n = {
1262 ipa~ extra~
1263 features = {
1264 Renderer = {HarfBuzz},
1265 StylisticSet = {05}
1266 },
1267 ipa~ sans~ extra~
1268 features = {
1269 Renderer = {HarfBuzz},
1270 StylisticSet = {05}
1271 },
1272 ipa~ mono~ extra~
1273 features = {
1274 Renderer = {HarfBuzz},
1275 StylisticSet = {05}
1276 },
1277 ipa~ main~ font = { NewCM10-Book.otf },
1278 ipa~ sans~ font = { NewCMSans10-Book.otf },
1279 ipa~ mono~ font = { NewCMMono10-Book.otf }

58

1280 }
1281 }

(End of definition for ipa newcm. This function is documented on page 11.)

ipa newcm sans This is a .meta:n key that sets the default IPA font to the sans family.
1282

1283 \keys_define:nn { lngx_keys } {
1284 ipa~ newcm~ sans
1285 .meta:n = {
1286 ipa~ extra~
1287 features = {
1288 Renderer = {HarfBuzz},
1289 StylisticSet = {05}
1290 },
1291 ipa~ sans~ extra~
1292 features = {
1293 Renderer = {HarfBuzz},
1294 StylisticSet = {05}
1295 },
1296 ipa~ mono~ extra~
1297 features = {
1298 Renderer = {HarfBuzz},
1299 StylisticSet = {05}
1300 },
1301 ipa~ main~ font = { NewCMSans10-Book.otf },
1302 ipa~ sans~ font = { NewCMSans10-Book.otf },
1303 ipa~ mono~ font = { NewCMMono10-Book.otf }
1304 }
1305 }

(End of definition for ipa newcm sans. This function is documented on page 11.)

ipa newcm mono This is a .meta:n key that sets the default IPA fonts to the monospaced family.
1306

1307 \keys_define:nn { lngx_keys } {
1308 ipa~ newcm~ mono
1309 .meta:n = {
1310 ipa~ extra~
1311 features = {
1312 Renderer = {HarfBuzz},
1313 StylisticSet = {05}
1314 },
1315 ipa~ sans~ extra~
1316 features = {
1317 Renderer = {HarfBuzz},
1318 StylisticSet = {05}
1319 },
1320 ipa~ mono~ extra~
1321 features = {
1322 Renderer = {HarfBuzz},
1323 StylisticSet = {05}
1324 },
1325 ipa~ main~ font = { NewCMMono10-Book.otf },
1326 ipa~ sans~ font = { NewCMSans10-Book.otf },

59

1327 ipa~ mono~ font = { NewCMMono10-Book.otf }
1328 }
1329 }

(End of definition for ipa newcm mono. This function is documented on page 11.)

ipa newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.
1330

1331 \keys_define:nn { lngx_keys } {
1332 ipa~ newcm~ regular
1333 .meta:n = {
1334 ipa~ extra~
1335 features = {
1336 Renderer = {HarfBuzz},
1337 StylisticSet = {05}
1338 },
1339 ipa~ sans~ extra~
1340 features = {
1341 Renderer = {HarfBuzz},
1342 StylisticSet = {05}
1343 },
1344 ipa~ mono~ extra~
1345 features = {
1346 Renderer = {HarfBuzz},
1347 StylisticSet = {05}
1348 },
1349 ipa~ main~ font = { NewCM10-Regular.otf },
1350 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1351 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1352 }
1353 }

(End of definition for ipa newcm regular. This function is documented on page 11.)

ipa newcm regular sans This is a .meta:n key that sets the default IPA fonts to the regular sans variant of the
New Computer Modern family.
1354

1355 \keys_define:nn { lngx_keys } {
1356 ipa~ newcm~ regular~ sans
1357 .meta:n = {
1358 ipa~ extra~
1359 features = {
1360 Renderer = {HarfBuzz},
1361 StylisticSet = {05}
1362 },
1363 ipa~ sans~ extra~
1364 features = {
1365 Renderer = {HarfBuzz},
1366 StylisticSet = {05}
1367 },
1368 ipa~ mono~ extra~
1369 features = {
1370 Renderer = {HarfBuzz},

60

1371 StylisticSet = {05}
1372 },
1373 ipa~ main~ font = { NewCMSans10-Regular.otf },
1374 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1375 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1376 }
1377 }

(End of definition for ipa newcm regular sans. This function is documented on page 11.)

ipa newcm regular mono This is a .meta:n key that sets the default IPA fonts to the regular monospaced variant
of the New Computer Modern family.
1378

1379 \keys_define:nn { lngx_keys } {
1380 ipa~ newcm~ regular~ mono
1381 .meta:n = {
1382 ipa~ extra~
1383 features = {
1384 Renderer = {HarfBuzz},
1385 StylisticSet = {05}
1386 },
1387 ipa~ sans~ extra~
1388 features = {
1389 Renderer = {HarfBuzz},
1390 StylisticSet = {05}
1391 },
1392 ipa~ mono~ extra~
1393 features = {
1394 Renderer = {HarfBuzz},
1395 StylisticSet = {05}
1396 },
1397 ipa~ main~ font = { NewCMMono10-Regular.otf },
1398 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1399 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1400 }
1401 }

(End of definition for ipa newcm regular mono. This function is documented on page 11.)
We set the ipa newcm key by default.

1402

1403 \lngx_set_keys:n {ipa~ newcm}

\lngx_set_main_ipa_font:nn
\lngx_main_ipa:
lngx_ipa_rm_nfss

\lngx_set_sans_ipa_font:nn
\lngx_sans_ipa:
lngx_ipa_sf_nfss

\lngx_set_mono_ipa_font:nn
\lngx_mono_ipa:
lngx_ipa_tt_nfss

Here, I develop font-setting commands for IPA. These commands are set with
\setfontfamily, so they keep overriding the definitions of the same command names.
These commands set NFSS families that we use later for setting the IPA fonts. These
functions and NFSS families are public, but manipulating them has effects (mostly desired)
at several other places, so use them with caution.
1404

1405 \cs_new_protected:Npn \lngx_set_main_ipa_font:nn #1#2 {
1406 \setfontfamily \lngx_main_ipa: [
1407 #1,
1408 NFSSFamily = { lngx_ipa_rm_nfss }
1409] { #2 }
1410 }

61

1411

1412 \cs_new_protected:Npn \lngx_set_sans_ipa_font:nn #1#2 {
1413 \setfontfamily \lngx_sans_ipa: [
1414 #1,
1415 NFSSFamily = { lngx_ipa_sf_nfss }
1416] { #2 }
1417 }
1418

1419 \cs_new_protected:Npn \lngx_set_mono_ipa_font:nn #1#2 {
1420 \setfontfamily \lngx_mono_ipa: [
1421 #1,
1422 NFSSFamily = { lngx_ipa_tt_nfss }
1423] { #2 }
1424 }
1425

1426 \cs_generate_variant:Nn \lngx_set_main_ipa_font:nn { VV }
1427 \cs_generate_variant:Nn \lngx_set_sans_ipa_font:nn { VV }
1428 \cs_generate_variant:Nn \lngx_set_mono_ipa_font:nn { VV }

(End of definition for \lngx_set_main_ipa_font:nn and others. These functions are documented on page 21.)

lngx_ipa Here, I create a ‘super font family’ with \lngx_super_font_family:nn, a macro provided
by LinguisTiX-nfss. Please see the documentation of that package for more information.
Note that lngx_ipa is a super family responsible for all the IPA-related functions of the
package. It is associated with the NFSS families defined just now for the IPA.
1429

1430 \lngx_super_font_family:nn { lngx_ipa } {
1431 rm = { lngx_ipa_rm_nfss },
1432 sf = { lngx_ipa_sf_nfss },
1433 tt = { lngx_ipa_tt_nfss }
1434 }

(End of definition for lngx_ipa. This function is documented on page 21.)

\lngxipa
\lngx_ipa:

I use \lngx_softer_super_font_family:n provided by LinguisTiX-nfssfor defining this
switch to the IPA.
1435

1436 \cs_new_protected:Npn \lngx_ipa: {
1437 \lngx_softer_super_font_family:n { lngx_ipa }
1438 }
1439

1440 \cs_gset_eq:NN \lngxipa \lngx_ipa:

(End of definition for \lngxipa and \lngx_ipa:. These functions are documented on page 11.)
Now, I have used the exact same method that I described in the implementation of
LinguisTiX-fonts for setting the size variants. This is done with lazy evaluation, just
before \begin{document}.
1441

1442 \clist_map_inline:nn {
1443 main,
1444 sans,
1445 mono
1446 } {
1447 \cs_new_protected:cpn {

62

1448 lngx_build_ #1 _ipa_font_features:
1449 } {
1450 \prop_map_inline:cn { g__lngx_ipa_ #1 _fonts_prop } {
1451 \tl_gput_right:cn {
1452 g__lngx_ipa_ #1 _font_features_tl
1453 } { ####2 }
1454 }
1455 }
1456 }
1457

1458 \hook_gput_code:nnn { begindocument / before } { . } {
1459 \lngx_build_main_ipa_font_features:
1460 \lngx_set_main_ipa_font:VV
1461 \g__lngx_ipa_main_font_features_tl
1462 \g__lngx_ipa_main_font_tl
1463 \lngx_build_sans_ipa_font_features:
1464 \lngx_set_sans_ipa_font:VV
1465 \g__lngx_ipa_sans_font_features_tl
1466 \g__lngx_ipa_sans_font_tl
1467 \lngx_build_mono_ipa_font_features:
1468 \lngx_set_mono_ipa_font:VV
1469 \g__lngx_ipa_mono_font_features_tl
1470 \g__lngx_ipa_mono_font_tl
1471 }
1472 ⟨/ipa⟩

63

LinguisTiX-languages Documentation | LATEX3-interface

1473 ⟨∗lang⟩
1474 \ProvidesExplPackage{linguistix-languages}
1475 {2026-02-02}
1476 {v0.8}
1477 {%
1478 An assistant package for automatically
1479 loading fonts and more settings for
1480 languages.%
1481 }

LinguisTiX-base is loaded (if not already done) for the key-value parser.
1482

1483 \IfPackageLoadedF { linguistix-base } {
1484 \RequirePackage { linguistix-base }
1485 }

The babel package is loaded with provide*=* option as it mandates the use of modern
mechanism.
1486

1487 \IfPackageLoadedF { babel } {
1488 \RequirePackage [provide * = *] { babel }
1489 }

\g_lngx_main_language_tl I declare a tl that I will use for storing the main language. It is publicly available.
1490

1491 \tl_new:N \g_lngx_main_language_tl

(End of definition for \g_lngx_main_language_tl. This function is documented on page 21.)

\g_lngx_languages_clist I declare a clist that I will use for storing languages. It is publicly available.
1492

1493 \clist_new:N \g_lngx_languages_clist

(End of definition for \g_lngx_languages_clist. This function is documented on page 21.)

\lngx_languages:nn
\providelanguage

I develop a wrapper macro with a :VV variant.
1494

1495 \cs_new_protected:Npn \lngx_languages:nn #1#2 {
1496 \babelprovide [#1] { #2 }
1497 }
1498

1499 \cs_generate_variant:Nn \lngx_languages:nn { VV }
1500 \cs_gset_eq:NN \providelanguage \lngx_languages:nn

(End of definition for \lngx_languages:nn and \providelanguage. These functions are documented on page
21.)
The babel package produces an ‘info’ message if the fonts are not set with \babelfont.
Mostly they aren’t set with this mechanism, so this warning is inevitable in default situ-
ations. Imagine loading LinguisTiX-fonts first and then loading this package. The fonts
are already set with \setmainfont and friends. Thus we will be prompted with this warn-
ing always. In order to avoid that, I renew the wrapper functions around \setmainfont
to \babelfont. Note that this only affects the usage when LinguisTiX-fonts is loaded. If
you use LinguisTiX-languages and then use \setmainfont-like commands, you will get
babel’s warning and I have no intention to suppress that behaviour.

64

1501

1502 \IfPackageLoadedTF { linguistix-fonts } {
1503 \cs_gset_protected:Npn \lngx_set_main_font:nn #1#2 {
1504 \babelfont { rm } [#1] { #2 }
1505 }
1506 \cs_gset_protected:Npn \lngx_set_sans_font:nn #1#2 {
1507 \babelfont { sf } [#1] { #2 }
1508 }
1509 \cs_gset_protected:Npn \lngx_set_mono_font:nn #1#2 {
1510 \babelfont { tt } [#1] { #2 }
1511 }
1512 } {
1513 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
1514 \babelfont { rm } [#1] { #2 }
1515 }
1516 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
1517 \babelfont { sf } [#1] { #2 }
1518 }
1519 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
1520 \babelfont { tt } [#1] { #2 }
1521 }
1522 }

\lngx_other_main_font:nnn
\lngx_other_sans_font:nnn
\lngx_other_mono_font:nnn

The following macros set fonts for other languages using the \babelfont command.
1523

1524 \cs_gset_protected:Npn \lngx_other_main_font:nnn #1#2#3 {
1525 \babelfont [#1] { rm } [#2] { #3 }
1526 }
1527

1528 \cs_gset_protected:Npn \lngx_other_sans_font:nnn #1#2#3 {
1529 \babelfont [#1] { sf } [#2] { #3 }
1530 }
1531

1532 \cs_gset_protected:Npn \lngx_other_mono_font:nnn #1#2#3 {
1533 \babelfont [#1] { tt } [#2] { #3 }
1534 }
1535

1536 \cs_generate_variant:Nn \lngx_other_main_font:nnn { nee }
1537 \cs_generate_variant:Nn \lngx_other_sans_font:nnn { nee }
1538 \cs_generate_variant:Nn \lngx_other_mono_font:nnn { nee }

(End of definition for \lngx_other_main_font:nnn , \lngx_other_sans_font:nnn , and \lngx_other_mono_-
font:nnn. These functions are documented on page 20.)

\lngx_load_languages:n
\loadlanguages

I provide a simple macro that only does the job of loading languages, both in LATEX3
style, as well as the in the plain style.
1539

1540 \cs_new_protected:Npn \lngx_load_languages:n #1 {
1541 \lngx_set_keys:n { languages = { #1 } }
1542 }
1543

1544 \cs_gset_eq:NN \loadlanguages \lngx_load_languages:n

(End of definition for \lngx_load_languages:n and \loadlanguages. These functions are documented on
page 21.)

65

I equate the \arabic command to a new command I want to provide. This is done in
order to get control over the default LATEX counters. The command is manipulated when
plugs are activated.

\lngx_counter:n
1545

1546 \cs_gset_eq:NN \lngx_counter:n \arabic

(End of definition for \lngx_counter:n. This function is documented on page 21.)
Now all the default counters are changed from \arabic to \lngx_counter:n.

1547

1548 \cs_set:Npn \thechapter {
1549 \lngx_counter:n { chapter }
1550 }
1551 \cs_set:Npn \thesection {
1552 \lngx_counter:n { section }
1553 }
1554 \cs_set:Npn \thesubsection {
1555 \lngx_counter:n { subsection }
1556 }
1557 \cs_set:Npn \thesubsubsection {
1558 \lngx_counter:n { subsubsection }
1559 }
1560 \cs_set:Npn \theparagraph {
1561 \lngx_counter:n { section }
1562 }
1563 \cs_set:Npn \thesubparagraph {
1564 \lngx_counter:n { section }
1565 }
1566 \cs_set:Npn \thepage {
1567 \lngx_counter:n { page }
1568 }
1569 \cs_set:Npn \thefigure {
1570 \lngx_counter:n { figure }
1571 }
1572 \cs_set:Npn \thetable {
1573 \lngx_counter:n { table }
1574 }
1575 \cs_set:Npn \thefootnote {
1576 \lngx_counter:n { footnote }
1577 }
1578 \cs_set:Npn \thempfootnote {
1579 \lngx_counter:n { mpfootnote }
1580 }
1581 \cs_set:Npn \theequation {
1582 \lngx_counter:n { equation }
1583 }

Here, I define the socket lngx/native-numbering.
1584

1585 \socket_new:nn { lngx / native-numbering } { 0 }

strict This plug sets the numbering strictly to the main language. If used, the function \lngx_-
counter:n is changed to the respective \xxxxcounter command (where xxxx stands for
the main language of the document).

66

1586

1587 \socket_new_plug:nnn { lngx / native-numbering }
1588 { strict } {
1589 \cs_gset_eq:Nc \lngx_counter:n {
1590 \tl_use:N \g_lngx_main_language_tl counter
1591 }
1592 }

(End of definition for strict. This function is documented on page 15.)

logical Here, I define the logical plug for lngx/native-numbering. The mechanism is pretty
similar as the one used for strict, but here I don’t renew it to the main language counter,
but instead I use the \localecounter command provided by the babel package. The
counters are then printed contextually (and TEX-logically).
1593

1594 \socket_new_plug:nnn { lngx / native-numbering }
1595 { logical } {
1596 \cs_gset_protected:Npn \lngx_counter:n ##1 {
1597 \localecounter { digits } { ##1 }
1598 }
1599 }

(End of definition for logical. This function is documented on page 15.)

off If the off plug is selected, then native digits are not needed. Thus the \lngx_counter:n
is set to the unmodified \arabic again.
1600

1601 \socket_new_plug:nnn { lngx / native-numbering} { off } {
1602 \cs_gset_eq:NN \lngx_counter:n \arabic
1603 }

(End of definition for off. This function is documented on page 15.)

native numbering The three choices for the native numbering key, i.e., strict, logical and off are defined
here. All of them activate the plugs of their name with the lngx/native-numbering
socket.
1604

1605 \cs_generate_variant:Nn \socket_assign_plug:nn { ne }
1606

1607 \keys_define:nn { lngx_keys } {
1608 native~ numbering
1609 .choices:nn = { strict,logical,off } {
1610 \socket_assign_plug:ne { lngx / native-numbering } {
1611 \str_use:N \l_keys_choice_str
1612 }
1613 \socket_use:n { lngx / native-numbering }
1614 },

Similarly, we set the default value to on.
1615 native~ numbering
1616 .default:n = { strict }
1617 }

(End of definition for native numbering. This function is documented on page 15.)

67

\lngx_misc_reset: Despite having sufficient control with the two plugs, there are some additional settings
required by some languages that are often not needed by most others. E.g., Marathi
renews the way enumerated lists are printed and that is supposed to be renewed when
the language is changed. I provide a shorthand to be used for resetting such settings. It
can be used in the packages of languages that don’t need special settings.
1618

1619 \cs_new_protected:Npn \lngx_misc_reset: {
1620 \cs_set:Npn \theenumii { \alph { enumii } }
1621 \cs_set:Npn \labelenumii { (\theenumii) }
1622 \cs_set:Npn \theenumiii { \roman { enumiii } }
1623 \cs_set:Npn \labelenumiii { \theenumiii . }
1624 \cs_set:Npn \theenumiv { \Alph { enumiv } }
1625 \cs_set:Npn \labelenumiv { \theenumiv . }
1626 \IfPackageLoadedT { expex } {
1627 \lingset { labeltype = alpha }
1628 }
1629 \cs_gset_eq:NN \emph \textit
1630 }

(End of definition for \lngx_misc_reset:. This function is documented on page 21.)
Here, I write a message to be issued when user loads an unsupported language.
1631

1632 \msg_new:nnn { linguistix-languages } { no_support } {
1633 ‘#1’~ is~ not~ supported.\\
1634 If~ you~ want~ it~ to~ be~ supported,~ please~ report~
1635 to~ the~ maintainers.
1636 }

languages I use the .code:n type for developing the languages key.
1637

1638 \keys_define:nn { lngx_keys } {
1639 languages
1640 .code:n = {

I pass the argument of this key to a global clist. It is stored for public use.
1641 \clist_gset:Nn \g_lngx_languages_clist { #1 }

Since this is a public clist for accessing the names of the languages, I copy it to a
temporary one so that the items of public interest are not lost during the operations.
1642 \clist_set_eq:NN \l_tmpa_clist \g_lngx_languages_clist

I check if the clist is empty or not. If it is empty, that means the user used the key
without a value. In that case, babel already loads an ‘info’-message saying that no language
is loaded. So we ignore the branch and silently move to the false branch.
1643 \clist_if_empty:NF \l_tmpa_clist {

In the false branch, I pop out the first element from the clist to \l_tmpa_tl. This is the
first language passed by the user. In LinguisTiX-languages, I assume that it is intended
to be the first language. It is important to pop the element out because the settings used
for the main language are different than the ones used for other languages.
1644 \clist_pop:NN \l_tmpa_clist \l_tmpa_tl

Since this tl stores the language that is going to be the main one, I equate it to another
public tl that I will be using later in language files.
1645 \tl_set_eq:NN \g_lngx_main_language_tl \l_tmpa_tl

68

In \l_tmpb_tl, I save the options that need to go with the language stored in \l_tmpa_tl.
The package used to have onchar option loaded conditionally with LuaLATEX, but to
avoid potential clashes, now it has moved to the individual package files of languages. Now
I directly load the main option which makes the concerned language the ‘main’ language
of the document.
1646 \tl_set:Ne \l_tmpb_tl {
1647 main,

To load the data from ini files, I use the import parameter.
1648 import
1649 }

I use the \babelprovide wrapper we saw earlier with the values of the first language.
1650 \lngx_languages:VV \l_tmpb_tl \l_tmpa_tl

I scan if the package for this language is available. If it is, it is loaded.
1651 \file_if_exist:nTF { linguistix - \l_tmpa_tl . sty } {
1652 \exp_args:Ne \RequirePackage
1653 { linguistix - \l_tmpa_tl }
1654 } {

If it is not, I issue the no_ldf warning message. It takes one argument that is the name
of the language. It is extracted using the V argument type.
1655 \msg_warning:nnV { linguistix-languages }
1656 { no_support }
1657 \l_tmpa_tl
1658 }

The temporary tls are cleared.
1659 \tl_clear:N \l_tmpa_tl
1660 \tl_clear:N \l_tmpb_tl

I again check if the clist is empty. If it is, it means the user is typesetting a monolingual
document as they don’t need any other language than the ‘main’ one.
1661 \clist_if_empty:NF \l_tmpa_clist {

Now I have to repeat the same actions for all the pending languages. I do it with
\clist_map_inline:Nn.
1662 \clist_map_inline:Nn \l_tmpa_clist {
1663 \clist_pop:NN \l_tmpa_clist \l_tmpa_tl
1664 \tl_set:Ne \l_tmpb_tl { import }
1665 \lngx_languages:VV \l_tmpb_tl \l_tmpa_tl
1666 \file_if_exist:nTF {
1667 linguistix - \l_tmpa_tl . sty
1668 } {
1669 \exp_args:Ne \RequirePackage
1670 { linguistix - \l_tmpa_tl }
1671 } {
1672 \msg_warning:nnV { linguistix-languages }
1673 { no_ldf }
1674 \l_tmpa_tl
1675 }
1676 \tl_clear:N \l_tmpa_tl
1677 \tl_clear:N \l_tmpb_tl
1678 }
1679 }

69

1680 }
1681 }
1682 }
1683 ⟨/lang⟩

(End of definition for languages. This function is documented on page 15.)

70

LinguisTiX-logos Documentation | LATEX3-interface

1684 ⟨∗logos⟩
1685 \ProvidesExplPackage{linguistix-logos}
1686 {2026-02-02}
1687 {v0.8}
1688 {%
1689 Logos of the ‘LinguisTiX’ bundle.%
1690 }

The fontspec package (if not already loaded).
1691

1692 \IfPackageLoadedF { fontspec } {
1693 \RequirePackage { fontspec }
1694 }

\lngx_logo_font: This is a command that switches to the New Computer Modern Uncial font family.
1695

1696 \newfontfamily \lngx_logo_font: [
1697 UprightFont = { NewCMUncial10-Book.otf },
1698 UprightFeatures = {
1699 SizeFeatures = {
1700 {
1701 Size = {-8},
1702 Font = {NewCMUncial08-Book.otf}
1703 },
1704 {
1705 Size = {8-},
1706 Font = {NewCMUncial10-Book.otf}
1707 },
1708 }
1709 },
1710 BoldFont = { NewCMUncial10-Bold.otf },
1711 BoldFeatures = {
1712 SizeFeatures = {
1713 {
1714 Size = {-8},
1715 Font = {NewCMUncial08-Bold.otf}
1716 },
1717 {
1718 Size = {8-},
1719 Font = {NewCMUncial10-Bold.otf}
1720 },
1721 }
1722 }
1723]{ NewCMUncial10-Book.otf }

(End of definition for \lngx_logo_font:. This function is documented on page 22.)

lngx_purple_color The following defines the lngx_purple_color.
1724

1725 \color_set:nn { lngx_purple_color } { blue ! 50 ! red }

(End of definition for lngx_purple_color. This function is documented on page 22.)

71

\lngxlogo Here, I define the commands for printing various logos.
1726

1727 \NewDocumentCommand \lngxlogo { O{} } {%
1728 \group_begin:
1729 \lngx_logo_font:
1730 LinguisTi
1731 \color_group_begin:
1732 \color_select:n { lngx_purple_color }
1733 X
1734 \color_group_end:
1735 \IfBlankF { #1 } { - #1 }
1736 \group_end:
1737 }

(End of definition for \lngxlogo. This function is documented on page 16.)
Since we need expandable commands, I use the non-protected function, \cs_new:Npn for
defining them.
1738

1739 \cs_new:Npn \lngxpkg {
1740 \IfPackageLoadedTF { hyperref } {
1741 \texorpdfstring {
1742 \lngxlogo
1743 } {
1744 LinguisTiX
1745 }
1746 } {
1747 \lngxlogo
1748 }
1749 }

Here, I define all the logos with a clist. The package names are stored in the clist and
then used at appropriate positions.
1750

1751 \clist_map_inline:nn {
1752 base,examples,fixpex,fonts,ipa,languages,logos,nfss,
1753 marathi,british,american,english,greek,malayalam,glossing,
1754 leipzig
1755 } {

#1 is substituted with the package name. First, for the command-name itself, then as the
optional argument of \lngxlogo and then in the PDF-string.
1756 \cs_new:cpn { lngx #1 logo } {
1757 \texorpdfstring {
1758 \lngxlogo [#1]
1759 } {
1760 LinguisTiX - #1
1761 }
1762 }
1763 }
1764 ⟨/logos⟩

LinguisTiX-nfss Documentation | LATEX3-interface

1765 ⟨∗nfss⟩

72

1766 \ProvidesExplPackage{linguistix-nfss}
1767 {2026-02-02}
1768 {v0.8}
1769 {%
1770 An extension to the core NFSS commands
1771 from the ‘LinguisTiX’ bundle.%
1772 }

I need a few temporary tls. I declare them here. As noted by the use of __, these are
package-internal tls. Even though I don’t have any intention to change them, these are
better not touched by the users.
1773

1774 \tl_new:N \l__lngx_normalfont_tmp_tl
1775 \tl_new:N \l__lngx_selectfont_tmp_tl
1776 \tl_new:N \l__lngx_family_tmp_tl
1777 \tl_new:N \l__lngx_nfss_tmp_tl

These tls are required for saving some values that are accessed later by the package as
well as by the users.
1778

1779 \tl_new:N \l_lngx_current_encoding_tl
1780 \tl_new:N \l_lngx_current_meta_family_tl
1781 \tl_new:N \l_lngx_current_super_family_tl
1782 \tl_new:N \l_lngx_current_series_tl
1783 \tl_new:N \l_lngx_current_shape_tl

\c_lngx_default_rmdefault_tl
\c_lngx_default_sfdefault_tl
\c_lngx_default_ttdefault_tl

Here, I start the begindocument/end hook. After the document has started, a lot of
initialisation can be assumed to have happened. I set some publicly available tls here.
1784

1785 \hook_gput_code:nnn { begindocument / end } { . } {
1786 \tl_const:Ne \c_lngx_default_rmdefault_tl { \rmdefault }
1787 \tl_const:Ne \c_lngx_default_sfdefault_tl { \sfdefault }
1788 \tl_const:Ne \c_lngx_default_ttdefault_tl { \ttdefault }

(End of definition for \c_lngx_default_rmdefault_tl , \c_lngx_default_sfdefault_tl , and \c_lngx_-
default_ttdefault_tl. These functions are documented on page 22.)

\l_lngx_current_encoding_tl
\l_lngx_current_meta_family_tl

\l_lngx_current_super_family_tl
\l_lngx_current_series_tl
\l_lngx_current_shape_tl

First, I set the value default for the initial super font family.
1789 \tl_set:Nn \l_lngx_current_super_family_tl { default }

The current encoding is saved in the relevant tl.
1790 \tl_set:Ne \l_lngx_current_encoding_tl {
1791 \encodingdefault
1792 }

When the package was first released, there was no public interface for guessing the current
meta family, but from ltnews42, \@currentmetafamily became available. Thanks Frank
for pointing this out.
1793 \tl_set:Ne \l_lngx_current_meta_family_tl {
1794 \@currentmetafamily % new from ltnews42, thanks Frank!
1795 }

Here, the series and shape tls are set to their defaults.
1796 \tl_set:Nn \l_lngx_current_series_tl { md }
1797 \tl_set:Nn \l_lngx_current_shape_tl { up }
1798 }

73

(End of definition for \l_lngx_current_encoding_tl and others. These functions are documented on page
22.)
The \selectfont command overrides the encoding. I trick the command by saving the
encoding that was active before \selectfont in a temporary tl.
1799

1800 \hook_gput_code:nnn { cmd / selectfont / before } { . } {
1801 \tl_set:Ne \l__lngx_selectfont_tmp_tl { \f@encoding }
1802 }

After the processing of \selectfont, I equate the temporary tl with the one that the
package is tracking. This way, the effect of \selectfont remains unchanged, but we still
save the values that were there before using it. Only encoding needs this special setting.
Other attributes aren’t reset by \selectfont.
1803

1804 \hook_gput_code:nnn { cmd / selectfont / after } { . } {
1805 \tl_set_eq:NN \l_lngx_current_encoding_tl
1806 \l__lngx_selectfont_tmp_tl
1807 \tl_clear:N \l__lngx_selectfont_tmp_tl
1808 }

Now, after each \XXfamily commands, I save the family name in the respective tl for
accessing later. All of these commands too reset the encoding. I repeat my trick for them
too.
1809

1810 \hook_gput_code:nnn { cmd / rmfamily / before } { . } {
1811 \tl_set:Nn \l_lngx_current_meta_family_tl { rm }
1812 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1813 }
1814

1815 \hook_gput_code:nnn { cmd / rmfamily / after } { . } {
1816 \tl_set:Nn \l_lngx_current_meta_family_tl { rm }
1817 \tl_set_eq:NN \l_lngx_current_encoding_tl
1818 \l__lngx_family_tmp_tl
1819 \tl_clear:N \l__lngx_family_tmp_tl
1820 }
1821

1822 \hook_gput_code:nnn { cmd / sffamily / before } { . } {
1823 \tl_set:Nn \l_lngx_current_meta_family_tl { sf }
1824 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1825 }
1826

1827 \hook_gput_code:nnn { cmd / sffamily / after } { . } {
1828 \tl_set:Nn \l_lngx_current_meta_family_tl { sf }
1829 \tl_set_eq:NN \l_lngx_current_encoding_tl
1830 \l__lngx_family_tmp_tl
1831 \tl_clear:N \l__lngx_family_tmp_tl
1832 }
1833

1834 \hook_gput_code:nnn { cmd / ttfamily / before } { . } {
1835 \tl_set:Nn \l_lngx_current_meta_family_tl { tt }
1836 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1837 }
1838

1839 \hook_gput_code:nnn { cmd / ttfamily / after } { . } {

74

1840 \tl_set:Nn \l_lngx_current_meta_family_tl { tt }
1841 \tl_set_eq:NN \l_lngx_current_encoding_tl
1842 \l__lngx_family_tmp_tl
1843 \tl_clear:N \l__lngx_family_tmp_tl
1844 }

After the series commands, I save the series name in the tl. Note that, I don’t use the
traditional LATEX labels m, bx etc. Using, md and bx is more intuitive, plus they also can
be used in the argument of \use:c directly.
1845

1846 \hook_gput_code:nnn { cmd / mdseries / after } { . } {
1847 \tl_set:Nn \l_lngx_current_series_tl { md }
1848 }
1849

1850 \hook_gput_code:nnn { cmd / bfseries / after } { . } {
1851 \tl_set:Nn \l_lngx_current_series_tl { bf }
1852 }

For shape related commands too, I save the names that are more closer to their respective
commands.
1853

1854 \hook_gput_code:nnn { cmd / upshape / after } { . } {
1855 \tl_set:Nn \l_lngx_current_shape_tl { up }
1856 }
1857

1858 \hook_gput_code:nnn { cmd / itshape / after } { . } {
1859 \tl_set:Nn \l_lngx_current_shape_tl { it }
1860 }
1861

1862 \hook_gput_code:nnn { cmd / scshape / after } { . } {
1863 \tl_set:Nn \l_lngx_current_shape_tl { sc }
1864 }
1865

1866 \hook_gput_code:nnn { cmd / sscshape / after } { . } {
1867 \tl_set:Nn \l_lngx_current_shape_tl { ssc }
1868 }
1869

1870 \hook_gput_code:nnn { cmd / slshape / after } { . } {
1871 \tl_set:Nn \l_lngx_current_shape_tl { sl }
1872 }
1873

1874 \hook_gput_code:nnn { cmd / swshape / after } { . } {
1875 \tl_set:Nn \l_lngx_current_shape_tl { sw }
1876 }
1877

1878 \hook_gput_code:nnn { cmd / ulcshape / after } { . } {
1879 \tl_set:Nn \l_lngx_current_shape_tl { ulc }
1880 }

\lngx_if_encoding_p:n
\lngx_if_encoding:nTF

I provide a conditional for checking the current encoding with the given argument.
1881

1882 \prg_new_conditional:Nnn \lngx_if_encoding:n {
1883 p,
1884 T,

75

1885 F,
1886 TF
1887 } {
1888 \tl_if_eq:NnTF \l_lngx_current_encoding_tl { #1 } {
1889 \prg_return_true:
1890 } {
1891 \prg_return_false:
1892 }
1893 }
1894

(End of definition for \lngx_if_encoding:nTF. This function is documented on page 22.)

\IfEncodingTF
\IfEncodingT
\IfEncodingF

For non-LATEX3 contexts, these simpler alternatives are provided.
1895

1896 \cs_new_eq:NN \IfEncodingTF \lngx_if_encoding:nTF
1897 \cs_new_eq:NN \IfEncodingT \lngx_if_encoding:nT
1898 \cs_new_eq:NN \IfEncodingF \lngx_if_encoding:nF

(End of definition for \IfEncodingTF , \IfEncodingT , and \IfEncodingF. These functions are documented
on page 18.)

\lngx_if_meta_family_p:n
\lngx_if_meta_family:nTF

A conditional for checking the meta family with the given argument.
1899

1900 \prg_new_conditional:Nnn \lngx_if_meta_family:n {
1901 p,
1902 T,
1903 F,
1904 TF
1905 } {
1906 \tl_if_eq:NnTF \l_lngx_current_meta_family_tl { #1 } {
1907 \prg_return_true:
1908 } {
1909 \prg_return_false:
1910 }
1911 }

(End of definition for \lngx_if_meta_family:nTF. This function is documented on page 22.)

\IfMetaFamilyTF
\IfMetaFamilyT
\IfMetaFamilyF

User-facing conditionals for meta family.
1912

1913 \cs_new_eq:NN \IfMetaFamilyTF \lngx_if_meta_family:nTF
1914 \cs_new_eq:NN \IfMetaFamilyT \lngx_if_meta_family:nT
1915 \cs_new_eq:NN \IfMetaFamilyF \lngx_if_meta_family:nF

(End of definition for \IfMetaFamilyTF , \IfMetaFamilyT , and \IfMetaFamilyF. These functions are docu-
mented on page 18.)

\lngx_if_super_family_p:n
\lngx_if_super_family:nTF

A conditional for checking the super family with the given argument.
1916

1917 \prg_new_conditional:Nnn \lngx_if_super_family:n {
1918 p,
1919 T,
1920 F,
1921 TF

76

1922 } {
1923 \tl_if_eq:NnTF \l_lngx_current_super_family_tl { #1 } {
1924 \prg_return_true:
1925 } {
1926 \prg_return_false:
1927 }
1928 }

(End of definition for \lngx_if_super_family:nTF. This function is documented on page 22.)

\IfSuperFamilyTF
\IfSuperFamilyT
\IfSuperFamilyF

User-facing conditionals for super family.
1929

1930 \cs_new_eq:NN \IfSuperFamilyTF \lngx_if_super_family:nTF
1931 \cs_new_eq:NN \IfSuperFamilyT \lngx_if_super_family:nT
1932 \cs_new_eq:NN \IfSuperFamilyF \lngx_if_super_family:nF

(End of definition for \IfSuperFamilyTF , \IfSuperFamilyT , and \IfSuperFamilyF. These functions are
documented on page 18.)

\lngx_if_series_p:n
\lngx_if_series:nTF

A conditional for checking the current series with the given argument.
1933

1934 \prg_new_conditional:Nnn \lngx_if_series:n {
1935 p,
1936 T,
1937 F,
1938 TF
1939 } {
1940 \tl_if_eq:NnTF \l_lngx_current_series_tl { #1 } {
1941 \prg_return_true:
1942 } {
1943 \prg_return_false:
1944 }
1945 }

(End of definition for \lngx_if_series:nTF. This function is documented on page 22.)

\IfSeriesTF
\IfSeriesT
\IfSeriesF

Its user-side macros.
1946

1947 \cs_new_eq:NN \IfSeriesTF \lngx_if_series:nTF
1948 \cs_new_eq:NN \IfSeriesT \lngx_if_series:nT
1949 \cs_new_eq:NN \IfSeriesF \lngx_if_series:nF

(End of definition for \IfSeriesTF , \IfSeriesT , and \IfSeriesF. These functions are documented on page
18.)

\lngx_if_shape_p:n
\lngx_if_shape:nTF

A conditional for checking the current shape with the current argument.
1950

1951 \prg_new_conditional:Nnn \lngx_if_shape:n {
1952 p,
1953 T,
1954 F,
1955 TF
1956 } {
1957 \tl_if_eq:NnTF \l_lngx_current_shape_tl { #1 } {
1958 \prg_return_true:

77

1959 } {
1960 \prg_return_false:
1961 }
1962 }

(End of definition for \lngx_if_shape:nTF. This function is documented on page 22.)

\IfShapeTF
\IfShapeT
\IfShapeF

User-side macros for the same.
1963

1964 \cs_new_eq:NN \IfShapeTF \lngx_if_shape:nTF
1965 \cs_new_eq:NN \IfShapeT \lngx_if_shape:nT
1966 \cs_new_eq:NN \IfShapeF \lngx_if_shape:nF

(End of definition for \IfShapeTF , \IfShapeT , and \IfShapeF. These functions are documented on page 18.)
Now I will use the \clist_map_inline:nn technique for generating multiple condi-

tionals of the same pattern. For that, I need a cnn variant of \prg_new_conditional:Nnn
that I create with the following.
1967

1968 \cs_generate_variant:Nn \prg_new_conditional:Nnn { cnn }

\lngx_if_meta_family_rm_p:
\lngx_if_meta_family_rm:TF
\lngx_if_meta_family_sf_p:
\lngx_if_meta_family_sf:TF
\lngx_if_meta_family_tt_p:
\lngx_if_meta_family_tt:TF

These are separate conditionals for rm, sf and tt families. They don’t require arguments.
No user side commands are provided for these.
1969

1970 \clist_map_inline:nn {
1971 rm,
1972 sf,
1973 tt
1974 } {
1975 \prg_new_conditional:cnn { lngx_if_meta_family_ #1 : } {
1976 p, T, F, TF
1977 } {
1978 \tl_if_eq:NnTF \l_lngx_current_meta_family_tl { #1 } {
1979 \prg_return_true:
1980 } {
1981 \prg_return_false:
1982 }
1983 }
1984 }

(End of definition for \lngx_if_meta_family_rm:TF , \lngx_if_meta_family_sf:TF , and \lngx_if_meta_-
family_tt:TF. These functions are documented on page 22.)

\lngx_if_series_md_p:
\lngx_if_series_md:TF
\lngx_if_series_bf_p:
\lngx_if_series_bf:TF

Separate conditionals for both the series.
1985

1986 \clist_map_inline:nn {
1987 md,
1988 bf
1989 } {
1990 \prg_new_conditional:cnn { lngx_if_series_ #1 : } {
1991 p, T, F, TF
1992 } {
1993 \tl_if_eq:NnTF \l_lngx_current_series_tl { #1 } {
1994 \prg_return_true:
1995 } {

78

1996 \prg_return_false:
1997 }
1998 }
1999 }

(End of definition for \lngx_if_series_md:TF and \lngx_if_series_bf:TF. These functions are documented
on page 23.)

\lngx_if_shape_up_p:
\lngx_if_shape_up:TF
\lngx_if_shape_it_p:
\lngx_if_shape_it:TF
\lngx_if_shape_sc_p:
\lngx_if_shape_sc:TF

\lngx_if_shape_ssc_p:
\lngx_if_shape_ssc:TF
\lngx_if_shape_sl_p:
\lngx_if_shape_sl:TF
\lngx_if_shape_sw_p:
\lngx_if_shape_sw:TF

\lngx_if_shape_ulc_p:
\lngx_if_shape_ulc:TF

Separate conditionals for all the shapes.
2000

2001 \clist_map_inline:nn {
2002 up,
2003 it,
2004 sc,
2005 ssc,
2006 sl,
2007 sw,
2008 ulc
2009 } {
2010 \prg_new_conditional:cnn { lngx_if_shape_ #1 : } {
2011 p, T, F, TF
2012 } {
2013 \tl_if_eq:NnTF \l_lngx_current_shape_tl { #1 } {
2014 \prg_return_true:
2015 } {
2016 \prg_return_false:
2017 }
2018 }
2019 }

(End of definition for \lngx_if_shape_up:TF and others. These functions are documented on page 23.)
These keys are used in the argument of \lngx_super_font_family:nn. This is why

they are separated from the set lngx_keys. We create new tls using these keys that
save the rm, sf and tt defaults of the new super font family. \l__lngx_nfss_tmp_tl is
defined by the command that creates the super font family.
2020

2021 \clist_map_inline:nn {
2022 rm,
2023 sf,
2024 tt
2025 } {
2026 \keys_define:nn { lngx_nfss } {
2027 #1
2028 .code:n = {
2029 \tl_gclear_new:c {
2030 g_lngx_ \l__lngx_nfss_tmp_tl _ #1 default _tl
2031 }
2032 \tl_gset:cn {
2033 g_lngx_ \l__lngx_nfss_tmp_tl _ #1 default _tl
2034 } { ##1 }
2035 }
2036 }
2037 }

79

\lngx_super_font_family:nn
\superfontfamily

I first set the temporary tl with the name of the super font family retrieved from the
first argument.
2038

2039 \cs_new_protected:Npn \lngx_super_font_family:nn #1#2 {
2040 \tl_set:Ne \l__lngx_nfss_tmp_tl { #1 }

Now, I pass the second argument to the key-set I just defined. The temporary tl is
cleared. This function comes with a user-side macro.
2041 \keys_set:nn { lngx_nfss } { #2 }
2042 \tl_clear:N \l__lngx_nfss_tmp_tl
2043 }
2044

2045 \cs_gset_eq:NN \superfontfamily
2046 \lngx_super_font_family:nn

(End of definition for \lngx_super_font_family:nn and \superfontfamily. These functions are documented
on page 23.)

\lngx_soft_super_font_family:nn
\softsuperfontfamily

I set the tl that saves the current font family to the first argument.
2047

2048 \cs_new_protected:Npn \lngx_soft_super_font_family:nn #1#2 {
2049 \tl_set:Ne \l_lngx_current_super_family_tl { #1 }

I first check if the tls for rm, sf and tt are empty or not. Only if they are not, I use their
content in the respective \XXdefault. This makes the use of all the keys optional. Only
the keys that the user has used are processed here.
2050 \clist_map_inline:nn {
2051 rm,
2052 sf,
2053 tt
2054 } {
2055 \tl_if_empty:cF { g_lngx_ #1 _ ##1 default_tl } {
2056 \cs_set:cpe { ##1 default } {
2057 \tl_use:c { g_lngx_ #1 _ ##1 default _tl }
2058 }
2059 }
2060 }

After setting the \XXdefault, I use the \normalfont to initialise the super font family.
2061 \normalfont

Now all the aspects are reset. But, we have them saved in our tls. So now depending on
the attributes that the user wants to retrieve, I call those attributes again. The second
argument is (expected to be) a comma-separated list of all such attributes. Thus, we
change the super font family, but retain the already active attributes. This command has
a user-facing macro.
2062 \clist_map_inline:nn { #2 } {
2063 \str_case:nn { ##1 } {
2064 { encoding } {
2065 \exp_args:NV \fontencoding
2066 \l_lngx_current_encoding_tl
2067 }
2068 { family } {
2069 \use:c {
2070 \l_lngx_current_meta_family_tl family

80

2071 }
2072 \exp_args:NV \fontencoding
2073 \l_lngx_current_encoding_tl
2074 \selectfont
2075 }
2076 { series } {
2077 \use:c {
2078 \l_lngx_current_series_tl series
2079 }
2080 }
2081 { shape } {
2082 \use:c {
2083 \l_lngx_current_shape_tl shape
2084 }
2085 }
2086 }
2087 }
2088 }
2089

2090 \cs_gset_eq:NN \softsuperfontfamily
2091 \lngx_soft_super_font_family:nn

(End of definition for \lngx_soft_super_font_family:nn and \softsuperfontfamily. These functions are
documented on page 23.)

\lngx_softer_super_font_family:n
\softersuperfontfamily

This function excludes the encoding and resets all the other attributes. It comes with a
user-side macro.
2092

2093 \cs_new_protected:Npn \lngx_softer_super_font_family:n #1 {
2094 \lngx_soft_super_font_family:nn { #1 } {
2095 family,
2096 series,
2097 shape
2098 }
2099 }
2100

2101 \cs_gset_eq:NN \softersuperfontfamily
2102 \lngx_softer_super_font_family:n

(End of definition for \lngx_softer_super_font_family:n and \softersuperfontfamily. These functions
are documented on page 23.)

\lngx_softest_super_font_family:n
\softestsuperfontfamily

This function resets all the attributes. It is available as a user-side macro.
2103

2104 \cs_new_protected:Npn \lngx_softest_super_font_family:n #1 {
2105 \lngx_soft_super_font_family:nn { #1 } {
2106 encoding,
2107 family,
2108 series,
2109 shape
2110 }
2111 }
2112

2113 \cs_gset_eq:NN \softestsuperfontfamily
2114 \lngx_softest_super_font_family:n

81

(End of definition for \lngx_softest_super_font_family:n and \softestsuperfontfamily. These functions
are documented on page 23.)

\lngx_soft_normal_font:n
\softnormalfont

Following the same logic, I now provide the command for resetting to the default super
family, but retaining the active attributes. I provide a user-side macro for this.
2115

2116 \cs_new_protected:Npn \lngx_soft_normal_font:n #1 {
2117 \tl_set:Ne \l_lngx_current_super_family_tl { default }
2118 \clist_map_inline:nn {
2119 rm,
2120 sf,
2121 tt
2122 } {
2123 \cs_set:cpe { ##1 default } {
2124 \tl_use:c { c_lngx_default_ ##1 default _tl }
2125 }
2126 }
2127 \normalfont
2128 \clist_map_inline:nn { #1 } {
2129 \str_case:nn { ##1 } {
2130 { encoding } {
2131 \exp_args:NV \fontencoding
2132 \l_lngx_current_encoding_tl
2133 }
2134 { family } {
2135 \use:c {
2136 \l_lngx_current_meta_family_tl family
2137 }
2138 \exp_args:NV \fontencoding
2139 \l_lngx_current_encoding_tl
2140 \selectfont
2141 }
2142 { series } {
2143 \use:c {
2144 \l_lngx_current_series_tl series
2145 }
2146 }
2147 { shape } {
2148 \use:c {
2149 \l_lngx_current_shape_tl shape
2150 }
2151 }
2152 }
2153 }
2154 }
2155

2156 \cs_gset_eq:NN \softnormalfont \lngx_soft_normal_font:n

(End of definition for \lngx_soft_normal_font:n and \softnormalfont. These functions are documented
on page 23.)

\lngx_softer_normal_font:
\softernormalfont

This is a parallel to the ‘softer’ super family command for the default super family.
2157

2158 \cs_new_protected:Npn \lngx_softer_normal_font: {

82

2159 \lngx_soft_normal_font:n {
2160 family,
2161 series,
2162 shape
2163 }
2164 }
2165

2166 \cs_gset_eq:NN \softernormalfont \lngx_softer_normal_font:

(End of definition for \lngx_softer_normal_font: and \softernormalfont. These functions are documented
on page 23.)

\lngx_softest_normal_font:
\softestnormalfont

This is a parallel to the ‘softest’ super family command for the default super family.
2167

2168 \cs_new_protected:Npn \lngx_softest_normal_font: {
2169 \lngx_soft_normal_font:n {
2170 encoding,
2171 family,
2172 series,
2173 shape
2174 }
2175 }
2176

2177 \cs_gset_eq:NN \softestnormalfont \lngx_softest_normal_font:

(End of definition for \lngx_softest_normal_font: and \softestnormalfont. These functions are docu-
mented on page 23.)

\CurrentEncoding
\CurrentMetaFamily

\CurrentSeries
\CurrentShape

Lastly, we create the commands that print the current values of the font attributes and
end the package.
2178 \cs_new:Npn \CurrentEncoding {
2179 \tl_use:N \l_lngx_current_encoding_tl
2180 }
2181 \cs_new:Npn \CurrentMetaFamily {
2182 \tl_use:N \l_lngx_current_meta_family_tl
2183 }
2184 \cs_new:Npn \CurrentSuperFamily {
2185 \tl_use:N \l_lngx_current_super_family_tl
2186 }
2187 \cs_new:Npn \CurrentSeries {
2188 \tl_use:N \l_lngx_current_series_tl
2189 }
2190 \cs_new:Npn \CurrentShape {
2191 \tl_use:N \l_lngx_current_shape_tl
2192 }
2193 ⟨/nfss⟩

(End of definition for \CurrentEncoding and others. These functions are documented on page 18.)

83

References
Bringhurst, Robert (2004). The elements of typographic style. 4th ed. Point Roberts, WA:

Hartley & Marks, Publishers.
Munn, Alan and Enrico Gregorio (5th Dec. 2023). ExPex fails with unicode-math. How

to avoid the clash? URL: https://tex.stackexchange.com/q/703094 (visited on
21/12/2025).

84

https://tex.stackexchange.com/q/703094

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\\ . 62, 63, 64, 1633

A
\addto . 21
\Alph . 1624
\alph . 1620
\arabic . 66, 67, 1546, 1602
\AssignTaggingSocketPlug . 576

B
\babelfont 1504, 1507, 1510, 1514, 1517, 1520, 1525, 1529, 1533
\babelprovide . 1496
\begin . 896, 1022
bool commands:

\bool_gset_false:N . 910
\bool_if:NTF 435, 437, 444, 446, 776, 810, 858, 945, 1027
\bool_new:N . 487
\bool_set_true:N . 760

bourbaki's empty set . 7, 136

C
\cleaders . 877
clist commands:

\clist_gset:Nn . 1641
\clist_if_empty:NTF . 1643, 1661
\clist_map_inline:Nn . 1662
\clist_map_inline:nn . 155, 211, 215, 267, 399, 1137, 1192, 1196, 1248, 1442,
1751, 1970, 1986, 2001, 2021, 2050, 2062, 2118, 2128
\clist_new:N . 1493
\clist_pop:NN . 1644, 1663
\clist_set_eq:NN . 1642
\l_tmpa_clist 1642, 1643, 1644, 1661, 1662, 1663

color commands:
\color_group_begin: . 1731
\color_group_end: . 1734
\color_select:n . 1732
\color_set:nn . 1725

columns . 10, 608
cs commands:

\cs_generate_variant:Nn 393, 394, 395, 396, 397, 1426, 1427, 1428, 1499,
1536, 1537, 1538, 1605, 1968
\cs_gset_eq:NN . 48, 83, 84, 750, 1440, 1500, 1544, 1546, 1589, 1602, 1629,
2045, 2090, 2101, 2113, 2156, 2166, 2177
\cs_gset_protected:Npn 1503, 1506, 1509, 1524, 1528, 1532, 1596

85

\cs_if_exist:NTF . 715
\cs_new:Npn 1739, 1756, 2178, 2181, 2184, 2187, 2190
\cs_new_eq:NN . . 1896, 1897, 1898, 1913, 1914, 1915, 1930, 1931, 1932, 1947,
1948, 1949, 1964, 1965, 1966
\cs_new_protected:Npn 45, 44, 368, 371, 374, 379, 383, 404, 415, 423, 666,
679, 847, 909, 1405, 1412, 1419, 1436, 1447, 1495, 1513, 1516, 1519, 1540, 1619,
2039, 2048, 2093, 2104, 2116, 2158, 2168
\cs_set:Npe . 2056, 2123
\cs_set:Npn 520, 1548, 1551, 1554, 1557, 1560, 1563, 1566, 1569, 1572, 1575,
1578, 1581, 1620, 1621, 1622, 1623, 1624, 1625
\cs_set_eq:NN . 525
\cs_undefine:N . 753

\CurrentEncoding . 18, 2178
\CurrentMetaFamily . 18, 2178
\CurrentSeries . 18, 2178
\CurrentShape . 18, 2178
\CurrentSuperFamily . 18, 2184

D
\DeclareMathVersion . 385
dim commands:

\dim_zero_new:N . 491, 492, 493, 494
\DocumentMetadata . 44

E
\em . 887
\emph . 1629
\encodingdefault . 1791
\end . 905, 1070
entry separator . 10, 639
exp commands:

\exp_args:Ne 70, 538, 552, 690, 713, 772, 808, 1652, 1669
\exp_args:Nee . 44, 683
\exp_args:NV . 2065, 2072, 2131, 2138
\exp_not:N . 721, 732, 1025, 1028
\exp_not:n 554, 692, 997, 1004, 1011, 1046, 1053, 1060

expansion . 9, 656
expansion case . 9, 592

F
file commands:

\file_if_exist:nTF . 1651, 1666
\finalhyphendemerits . 856
\fontencoding . 2065, 2072, 2131, 2138
format . 9, 577

G
\GetDocumentProperties . 647
\gla . 83, 84
gloss . 9, 650

86

\glossaryname . 51, 1021, 1028
\glx . 8, 10, 756
\glx* . 8, 10
group commands:

\group_begin: . 169, 183, 229, 243, 549, 667, 689, 718, 758, 805, 852, 911,
926, 984, 1033, 1076, 1151, 1165, 1210, 1224, 1728
\group_end: 179, 195, 239, 255, 567, 707, 738, 747, 841, 844, 889, 1016, 1019,
1068, 1072, 1083, 1161, 1177, 1220, 1236, 1736

H
\hbox . 132, 878
hook commands:

\hook_gput_code:nnn . 68, 82, 431, 1458, 1785, 1800, 1804, 1810, 1815, 1822,
1827, 1834, 1839, 1846, 1850, 1854, 1858, 1862, 1866, 1870, 1874, 1878

\hskip . 879
\hss . 878
\hyperlink . 565, 705
\hypersetup . 552, 690

I
\IfBlankF . 1735
\IfBooleanT . 759
\IfBooleanTF . 1121
\IfDocumentMetadataT . 867, 880
\IfDocumentMetadataTF . 682
\IfEncodingF . 18, 1895
\IfEncodingT . 18, 1895
\IfEncodingTF . 18, 1895
\IfMetaFamilyF . 18, 1912
\IfMetaFamilyT . 18, 1912
\IfMetaFamilyTF . 18, 1912
\IfPackageLoadedF . 10, 13, 16, 19, 22, 25, 28, 31, 73, 107, 112, 113, 118, 123, 367,

483, 1097, 1098, 1103, 1108, 1112, 1116, 1483, 1487, 1692
\IfPackageLoadedT . 384, 467, 1626
\IfPackageLoadedTF . 69, 71, 548, 688, 1502, 1740
\IfPDFManagementActiveT . 505, 557, 645, 695
\IfSeriesF . 18, 1946
\IfSeriesT . 18, 1946
\IfSeriesTF . 18, 1946
\IfShapeF . 18, 1963
\IfShapeT . 18, 1963
\IfShapeTF . 18, 1963
\IfSuperFamilyF . 18, 1929
\IfSuperFamilyT . 18, 1929
\IfSuperFamilyTF . 18, 1929
int commands:

\int_compare:nNnTF . 893, 902
\int_gincr:N . 712

87

\int_gzero_new:N . 495
\int_use:N . 714, 716, 723, 734, 894, 897, 903

ipa bold italic . 12, 1133
ipa bold italic features . 12, 1133
ipa bold slanted . 12, 1133
ipa bold slanted features . 12, 1133
ipa bold swash . 12, 1133
ipa bold swash features . 12, 1133
ipa bold upright . 11, 1133
ipa bold upright features . 11, 1133
ipa extra features . 13, 1181
ipa italic . 12, 1133
ipa italic features . 12, 1133
ipa main font . 11, 1247
ipa mono bold italic . 12, 1186
ipa mono bold italic features . 12, 1186
ipa mono bold slanted . 12, 1186
ipa mono bold slanted features . 13, 1186
ipa mono bold swash . 13, 1186
ipa mono bold swash features . 13, 1186
ipa mono bold upright . 12, 1186
ipa mono bold upright features . 12, 1186
ipa mono extra features . 13
ipa mono font . 12, 1247
ipa mono italic . 12, 1186
ipa mono italic features . 12, 1186
ipa mono slanted . 12, 1186
ipa mono slanted features . 12, 1186
ipa mono small caps . 13, 1186
ipa mono small caps features . 13, 1186
ipa mono swash . 13, 1186
ipa mono swash features . 13, 1186
ipa mono upright . 12, 1186
ipa mono upright features . 12, 1186
ipa newcm . 11, 1258
ipa newcm mono . 11, 1306
ipa newcm regular . 11, 1330
ipa newcm regular mono . 11, 1378
ipa newcm regular sans . 11, 1354
ipa newcm sans . 11, 1282
ipa sans bold italic . 12, 1186
ipa sans bold italic features . 12, 1186
ipa sans bold slanted . 12, 1186
ipa sans bold slanted features . 12, 1186
ipa sans bold swash . 12, 1186
ipa sans bold swash features . 12, 1186
ipa sans bold upright . 12, 1186

88

ipa sans bold upright features . 12, 1186
ipa sans extra features . 13
ipa sans font . 12, 1247
ipa sans italic . 12, 1186
ipa sans italic features . 12, 1186
ipa sans slanted . 12, 1186
ipa sans slanted features . 12, 1186
ipa sans small caps . 12, 1186
ipa sans small caps features . 12, 1186
ipa sans swash . 12, 1186
ipa sans swash features . 12, 1186
ipa sans upright . 12, 1186
ipa sans upright features . 12, 1186
ipa slanted . 12, 1133
ipa slanted features . 12, 1133
ipa small caps . 12, 1133
ipa small caps features . 12, 1133
ipa swash . 12, 1133
ipa swash features . 12, 1133
ipa upright . 11, 1133
ipa upright features . 11, 1133
\ipatext . 11, 1119
\ipatext* . 11, 1119

K
\kern . 130, 131, 132, 133, 886
keys commands:

\l_keys_choice_str . 588, 597, 604, 1611
\keys_define:nn 137, 166, 200, 226, 259, 272, 284, 295, 306, 317, 328, 339,
350, 578, 651, 1148, 1182, 1207, 1240, 1253, 1259, 1283, 1307, 1331, 1355, 1379,
1607, 1638, 2026
\keys_set:nn 45, 663, 762, 766, 927, 1078, 1081, 2041

L
\label . 44, 714
\labelenumii . 1621
\labelenumiii . 1623
\labelenumiv . 1625
languages . 15, 1637
\LaTeX . 5, 126
\leavevmode . 865
\leftskip . 855
\lingset . 1627
\linguistix . 5, 19, 47
link color . 9, 581
\listofglosses . 8, 10, 20, 1074
lngx commands:

\g_lngx_bourbaki_bool . 20, 136

89

\lngx_build_main_ipa_font_features: . 1459
\lngx_build_mono_ipa_font_features: . 1467
\lngx_build_sans_ipa_font_features: . 1463
\lngx_counter:n 15, 21, 66, 67, 1545, 1546, 1549, 1552, 1555, 1558, 1561, 1564,
1567, 1570, 1573, 1576, 1579, 1582, 1589, 1596, 1602
\l_lngx_current_encoding_tl 22, 1779, 1789, 1805, 1817, 1829, 1841, 1888,
2066, 2073, 2132, 2139, 2179
\l_lngx_current_meta_family_tl . . 22, 1780, 1789, 1811, 1816, 1823, 1828,
1835, 1840, 1906, 1978, 2070, 2136, 2182
\l_lngx_current_series_tl . 22, 1782, 1789, 1847, 1851, 1940, 1993, 2078,
2144, 2188
\l_lngx_current_shape_tl . . 22, 1783, 1789, 1855, 1859, 1863, 1867, 1871,
1875, 1879, 1957, 2013, 2083, 2149, 2191
\l_lngx_current_super_family_tl 22, 1781, 1789, 1923, 2049, 2117, 2185
\c_lngx_default_rmdefault_tl . 22, 1784
\c_lngx_default_sfdefault_tl . 22, 1784
\c_lngx_default_ttdefault_tl . 22, 1784
\l_lngx_expansion_bool . 487, 760, 776, 810
\lngx_expansion_format:n . 20, 656, 657, 955, 964, 973, 995, 1002, 1009,
1044, 1051, 1058
\l_lngx_expansion_separator_tl 489, 813, 821, 829
\lngx_gloss_format:n . . 20, 564, 569, 650, 653, 704, 709, 859, 946, 988
\g_lngx_gloss_link_color_str . 39
\lngx_gloss_list: . 20, 908, 909, 1082
\lngx_gloss_new:nn . 20, 45, 665, 666, 750, 754
\l_lngx_gloss_separator_tl . 488, 838
\l_lngx_glossary_separator_tl 490, 862, 948, 990
\l_lngx_gls_language_str . 496, 646
\l_lngx_i_hack_dim . 494
\l_lngx_i_have_dim . 491
\l_lngx_i_need_dim . 492
\lngx_if_encoding:n . 1882
\lngx_if_encoding:nTF 22, 1881, 1896, 1897, 1898
\lngx_if_encoding_p:n . 22, 1881
\lngx_if_meta_family:n . 1900
\lngx_if_meta_family:nTF 22, 1899, 1913, 1914, 1915
\lngx_if_meta_family_p:n . 22, 1899
\lngx_if_meta_family_rm:TF . 22, 1969
\lngx_if_meta_family_rm_p: . 22, 1969
\lngx_if_meta_family_sf:TF . 22, 1969
\lngx_if_meta_family_sf_p: . 22, 1969
\lngx_if_meta_family_tt:TF . 22, 1969
\lngx_if_meta_family_tt_p: . 22, 1969
\lngx_if_series:n . 1934
\lngx_if_series:nTF . 22, 1933, 1947, 1948, 1949
\lngx_if_series_bf:TF . 23, 1985
\lngx_if_series_bf_p: . 23, 1985

90

\lngx_if_series_md:TF . 23, 1985
\lngx_if_series_md_p: . 23, 1985
\lngx_if_series_p:n . 22, 1933
\lngx_if_shape:n . 1951
\lngx_if_shape:nTF . 22, 1950, 1964, 1965, 1966
\lngx_if_shape_it:TF . 23, 2000
\lngx_if_shape_it_p: . 23, 2000
\lngx_if_shape_p:n . 22, 1950
\lngx_if_shape_sc:TF . 23, 2000
\lngx_if_shape_sc_p: . 23, 2000
\lngx_if_shape_sl:TF . 23, 2000
\lngx_if_shape_sl_p: . 23, 2000
\lngx_if_shape_ssc:TF . 23, 2000
\lngx_if_shape_ssc_p: . 23, 2000
\lngx_if_shape_sw:TF . 23, 2000
\lngx_if_shape_sw_p: . 23, 2000
\lngx_if_shape_ulc:TF . 23, 2000
\lngx_if_shape_ulc_p: . 23, 2000
\lngx_if_shape_up:TF . 23, 2000
\lngx_if_shape_up_p: . 23, 2000
\lngx_if_super_family:n . 1917
\lngx_if_super_family:nTF 22, 1916, 1930, 1931, 1932
\lngx_if_super_family_p:n . 22, 1916
lngx_ipa . 21, 1429
\lngx_ipa: . 21, 1435, 1436, 1440
lngx_ipa_rm_nfss . 21, 1404
lngx_ipa_sf_nfss . 21, 1404
lngx_ipa_tt_nfss . 21, 1404
\lngx_languages:nn 21, 1494, 1495, 1499, 1500, 1650, 1665
\g_lngx_languages_clist . 21, 1492, 1641, 1642
\lngx_load_languages:n . 21, 1539, 1540, 1544
\lngx_logo_font: . 22, 1695, 1696, 1729
\lngx_main_ipa: . 21, 1404, 1406
\g_lngx_main_language_tl 21, 1490, 1590, 1645
\lngx_misc_reset: . 21, 1618, 1619
\lngx_mono_ipa: . 21, 1404, 1420
lngx_multicols . 20, 891
\g_lngx_old_style_bool . 20, 136, 435, 444
\g_lngx_old_style_one_bool . 20, 136, 437, 446
\lngx_other_main_font:nnn 20, 1523, 1524, 1536
\lngx_other_mono_font:nnn 20, 1523, 1532, 1538
\lngx_other_sans_font:nnn 20, 1523, 1528, 1537
lngx_purple_color . 22, 1724
\l_lngx_remain_dim . 493
\lngx_sans_ipa: . 21, 1404, 1413
\l_lngx_separator_tl . 53

91

\lngx_set_keys:n 19, 43, 44, 48, 361, 432, 1403, 1541
\lngx_set_main_font:nn 20, 366, 368, 393, 453, 1503, 1513
\lngx_set_main_ipa_font:nn 21, 1404, 1405, 1426, 1460
\lngx_set_math_bold_font:nn . 383, 397, 469
\lngx_set_math_font:nn 20, 366, 379, 396, 465
\lngx_set_mono_font:nn 20, 366, 374, 395, 461, 1509, 1519
\lngx_set_mono_ipa_font:nn 21, 1404, 1419, 1428, 1468
\lngx_set_sans_font:nn 20, 366, 371, 394, 457, 1506, 1516
\lngx_set_sans_ipa_font:nn 21, 1404, 1412, 1427, 1464
\lngx_soft_normal_font:n 23, 2115, 2116, 2156, 2159, 2169
\lngx_soft_super_font_family:nn 23, 2047, 2048, 2091, 2094, 2105
\lngx_softer_normal_font: 23, 2157, 2158, 2166
\lngx_softer_super_font_family:n 23, 1437, 2092, 2093, 2102
\lngx_softest_normal_font: 23, 2167, 2168, 2177
\lngx_softest_super_font_family:n 23, 2103, 2104, 2114
\lngx_super_font_family:nn 23, 1430, 2038, 2039, 2046
\g_lngx_trigger_aux_file_bool . 910

lngx internal commands:
\g__lngx_bold_math_font_features_tl . 398
__lngx_build_bold_math_font_features: 398
__lngx_build_main_font_features: . 398, 452
__lngx_build_math_bold_features: . 423, 468
__lngx_build_math_features: . 415, 464
__lngx_build_math_font_features: . 398
__lngx_build_mono_font_features: . 398, 460
__lngx_build_sans_font_features: . 398, 456
__lngx_dotfill:nnn . 846, 847, 1038
\l__lngx_entry_separator_tl 639, 850, 888, 985
\l__lngx_family_tmp_tl 1776, 1812, 1818, 1819, 1824, 1830, 1831, 1836, 1842,
1843
__lngx_gloss_description: 39, 518, 520, 525, 542
\g__lngx_gloss_link_color_str . 554, 581, 692
\l__lngx_glossary_columns_int 20, 608, 894, 897, 903
\l__lngx_glossary_style_str . 499, 601, 925
\l__lngx_glosses_page_number_bool . 612
\l__lngx_gls_bold_bool . 625, 858, 945
\l__lngx_gls_expansion_case_str . . . 498, 592, 777, 811, 953, 993, 1042
\l__lngx_gls_section_number_bool . 621, 1027
\l__lngx_gls_sectioning_str . 617, 1023, 1026
\l__lngx_gls_sorting_order_str 497, 585, 914
\g__lngx_gls_use_order_seq . 501, 740, 743, 913
\g__lngx_ipa_main_font_features_tl 1133, 1461
\g__lngx_ipa_main_font_tl . 1247, 1462
\g__lngx_ipa_main_fonts_prop . 1133, 1184
\g__lngx_ipa_mono_font_features_tl 1186, 1469

92

\g__lngx_ipa_mono_font_tl . 1247, 1470
\g__lngx_ipa_mono_fonts_prop . 1186
\g__lngx_ipa_sans_font_features_tl 1186, 1465
\g__lngx_ipa_sans_font_tl . 1247, 1466
\g__lngx_ipa_sans_fonts_prop . 1186
\g__lngx_math_bold_features_tl 277, 425, 470
\g__lngx_math_bold_font_tl . 288, 471
\g__lngx_math_bold_fonts_prop . 277, 424
\g__lngx_math_features_tl . 277, 417, 465
\g__lngx_math_font_features_tl . 398
\g__lngx_math_font_tl . 286, 466
\g__lngx_math_fonts_prop . 277, 416
\l__lngx_nfss_tmp_tl 1777, 2030, 2033, 2040, 2042
\l__lngx_normalfont_tmp_tl . 1774
\g__lngx_page_ref_int 44, 495, 712, 714, 716, 723, 734
\l__lngx_selectfont_tmp_tl 1775, 1801, 1806, 1807
\l__lngx_separator_str 500, 503, 633, 761, 1077
\l__lngx_separator_tl . 629
\g__lngx_text_main_font_features_tl 151, 398, 454
\g__lngx_text_main_font_tl . 266, 455
\g__lngx_text_main_fonts_prop . 151, 202
\g__lngx_text_mono_font_features_tl 204, 398, 462
\g__lngx_text_mono_font_tl . 266, 463
\g__lngx_text_mono_fonts_prop . 204
\g__lngx_text_sans_font_features_tl 204, 398, 458
\g__lngx_text_sans_font_tl . 266, 459
\g__lngx_text_sans_fonts_prop . 204
__lngx_tmp_text: . 509, 511

\lngxipa . 11, 17, 21, 1123, 1128, 1435
\lngxlogo . 16, 1726, 1742, 1747, 1758
\lngxpkg . 1739
\loadlanguages . 15, 1539
\localecounter . 1597
logical . 15, 1593

M
\MakeLinkTarget . 942, 986, 1039
\MakeLinkTarget* . 49, 52
math . 6, 277
math bold . 6, 277
math bold features . 6, 277
math features . 6, 277
mode commands:

\mode_leave_vertical: . 536
msg commands:

\msg_info:nnn . 87, 92
\msg_new:nnn . 59, 1632

93

\msg_warning:nnn . 1655, 1672
\multicol . 38

N
native numbering . 15, 1604
newcm . 6, 294
newcm mono . 6, 316
newcm regular . 6, 327
newcm regular mono . 6, 349
newcm regular sans . 6, 338
newcm sans . 6, 305
\NewCommandCopy . 127
\NewDocumentCommand 662, 752, 757, 1075, 1120, 1727
\NewDocumentEnvironment . 892
\newfontfamily . 1696
\newgloss . 8, 20, 665
\NewTaggingSocket . 533
\NewTaggingSocketPlug . 535
no bold . 10, 625
\noindent . 900
\normalfont . 2061, 2127

O
off . 15, 1600
\ogLaTeX . 5, 126
old style numbers . 6, 136
old style one . 6, 136

P
page numbers . 10, 612
\par . 642
\parfillskip . 854
\parindent . 857
pdfannot commands:

\pdfannot_dict_put:nnn . 510
\pdfstringdef . 509
prg commands:

\prg_do_nothing: 525, 853, 854, 855, 856, 857, 879, 886
\prg_new_conditional:Nnn 1882, 1900, 1917, 1934, 1951, 1968, 1975, 1990,
2010
\prg_return_false: 1891, 1909, 1926, 1943, 1960, 1981, 1996, 2016
\prg_return_true: 1889, 1907, 1924, 1941, 1958, 1979, 1994, 2014

prop commands:
\prop_gclear_new:N 152, 205, 208, 278, 281, 1134, 1187, 1189
\prop_gput:Nnn 176, 190, 236, 250, 1158, 1172, 1217, 1231
\prop_map_inline:Nn . 407, 416, 424, 1450

\ProvideDocumentCommand . 1021
\providelanguage . 15, 1494
\ProvidesExplPackage 2, 36, 51, 99, 476, 1087, 1474, 1685, 1766

94

Q
\quad . 866, 885

R
\raisebox . 131, 133
\ref . 44
\relax . 130, 131, 132, 133
\RenewDocumentCommand . 129
\renewgloss . 8, 45, 751
\RequirePackage 11, 14, 17, 20, 23, 26, 29, 32, 108, 114, 119, 124, 484, 1099, 1104,

1109, 1113, 1117, 1484, 1488, 1652, 1669, 1693
\rightskip . 853
\rmdefault . 1786
\roman . 1622

S
\section . 41
section number . 10, 621
sectioning . 10, 617
\selectfont . 2074, 2140
separator . 10, 629
seq commands:

\seq_clear:N . 768, 912, 1034
\seq_gclear_new:N . 501, 673
\seq_gput_right:Nn . 729, 743
\seq_if_empty:NTF . 803, 982
\seq_if_in:NnTF . 726, 740
\seq_map_inline:Nn . 804, 983, 1032, 1035
\seq_pop_left:NN . 770, 933
\seq_put_right:Nn . 1036
\seq_remove_duplicates:N . 44
\seq_set_eq:NN . 913
\seq_set_from_clist:Nn . 769
\seq_sort:Nn . 916
\seq_use:Nn . 1066
\l_tmpa_seq . . 768, 769, 770, 803, 804, 912, 913, 916, 933, 982, 983, 1032
\l_tmpb_seq . 1034, 1036, 1066

\setfontfamily . 1406, 1413, 1420
\setmainfont . 369
\setmathfont . 380, 387
\setmonofont . 375
\setsansfont . 372
\setupglossing . 9, 661
\sfdefault . 1787
\smallskip . 851
socket commands:

\socket_assign_plug:nn 528, 559, 699, 1605, 1610
\socket_if_exist:nTF . 506, 558, 696
\socket_new:nn . 517, 1585
\socket_new_plug:nnn 507, 519, 523, 1587, 1594, 1601

95

\socket_use:n . 531, 1613
\softernormalfont . 19, 2157
\softersuperfontfamily . 19, 2092
\softestnormalfont . 19, 2167
\softestsuperfontfamily . 19, 2103
\softnormalfont . 19, 2115
\softsuperfontfamily . 19, 2047
sort . 9, 585
sort commands:

\sort_return_same: . 920
\sort_return_swapped: . 918

str commands:
\c_colon_str . 928, 1079
\str_case:nn 777, 811, 914, 953, 993, 1042, 2063, 2129
\str_clear:N 170, 184, 230, 244, 550, 668, 806, 932, 1152, 1166, 1211, 1225
\str_clear_new:N . 496, 497, 498, 499, 500
\str_compare:nNnTF . 917
\str_if_eq:nnTF . 925, 1023
\str_lowercase:n . 43, 669, 772, 808
\str_replace_all:Nnn 175, 189, 235, 249, 1157, 1171, 1216, 1230
\str_set:Nn 171, 185, 231, 245, 503, 551, 646, 669, 761, 771, 807, 934, 1077,
1153, 1167, 1212, 1226
\str_set_eq:NN . 587, 596, 603
\str_use:N . 178, 193, 253, 633, 671, 674, 677, 680, 685, 727, 730, 741, 744,
781, 788, 795, 801, 816, 824, 832, 839, 943, 958, 967, 976, 1026, 1160, 1175,
1234, 1611
\l_tmpa_str . 170, 171, 175, 178, 184, 185, 189, 193, 230, 231, 235, 244, 245,
249, 253, 550, 551, 668, 669, 671, 674, 677, 680, 685, 727, 730, 741, 744, 771,
781, 788, 795, 801, 806, 807, 816, 824, 832, 839, 932, 934, 943, 958, 967, 976,
1152, 1153, 1157, 1160, 1166, 1167, 1171, 1175, 1211, 1212, 1216, 1225, 1226, 1230,
1234

strict . 15, 1586
style . 9, 601
\superfontfamily . 18, 2038
sys commands:

\sys_if_engine_luatex:TF . 72, 111, 1096

T
tag commands:

\tag_mc_begin:n . 545, 573, 873, 883, 939
\tag_mc_end: . 537, 571, 868, 881, 935, 951
\tag_struct_begin:n . 539, 869, 936
\tag_struct_end: . 572, 882, 952

TEX and LATEX2𝜀 commands:
\@currentmetafamily . 1794
\f@encoding . 1801, 1812, 1824, 1836
\glw@gla . 84

\texorpdfstring . 1741, 1757
text bold italic . 12, 151

96

text bold italic features . 12, 151
text bold slanted . 12, 151
text bold slanted features . 12, 151
text bold swash . 12, 151
text bold swash features . 12, 151
text bold upright . 11, 151
text bold upright features . 11, 151
text commands:

\text_lowercase:n . 779, 814, 956, 996, 1045
\text_titlecase_all:n 172, 186, 232, 246, 786, 822, 965, 1003, 1052, 1154,
1168, 1213, 1227
\text_titlecase_first:n 793, 830, 974, 1010, 1059

text extra features . 13, 199
text italic . 12, 151
text italic features . 12, 151
text main font . 11, 266
text mono bold italic . 12, 204
text mono bold italic features . 12, 204
text mono bold slanted . 12, 204
text mono bold slanted features . 13, 204
text mono bold swash . 13, 204
text mono bold swash features . 13, 204
text mono bold upright . 12, 204
text mono bold upright features . 12, 204
text mono extra features . 13
text mono font . 12, 266
text mono italic . 12, 204
text mono italic features . 12, 204
text mono slanted . 12, 204
text mono slanted features . 12, 204
text mono small caps . 13, 204
text mono small caps features . 13, 204
text mono swash . 13, 204
text mono swash features . 13, 204
text mono upright . 12, 204
text mono upright features . 12, 204
text sans bold italic . 12, 204
text sans bold italic features . 12, 204
text sans bold slanted . 12, 204
text sans bold slanted features . 12, 204
text sans bold swash . 12, 204
text sans bold swash features . 12, 204
text sans bold upright . 12, 204
text sans bold upright features . 12, 204
text sans extra features . 13

97

text sans font . 12, 266
text sans italic . 12, 204
text sans italic features . 12, 204
text sans slanted . 12, 204
text sans slanted features . 12, 204
text sans small caps . 12, 204
text sans small caps features . 12, 204
text sans swash . 12, 204
text sans swash features . 12, 204
text sans upright . 12, 204
text sans upright features . 12, 204
text slanted . 12, 151
text slanted features . 12, 151
text small caps . 12, 151
text small caps features . 12, 151
text swash . 12, 151
text swash features . 12, 151
text upright . 11, 151
text upright features . 11, 151
\textbf . 858, 945, 987
\textit . 1629
\textsc . 9, 131, 655
\thechapter . 1548
\theenumii . 1620, 1621
\theenumiii . 1622, 1623
\theenumiv . 1624, 1625
\theequation . 1581
\thefigure . 1569
\thefootnote . 1575
\thempfootnote . 1578
\thepage . 1566
\theparagraph . 1560
\thesection . 1551
\thesubparagraph . 1563
\thesubsection . 1554
\thesubsubsection . 1557
\thetable . 1572
tl commands:

\c_space_tl . 763, 928, 1079
\tl_clear:N . . 719, 767, 931, 1659, 1660, 1676, 1677, 1807, 1819, 1831, 1843,
2042
\tl_clear_new:N . 488, 489, 490
\tl_const:Nn . 1786, 1787, 1788
\tl_gclear_new:N . . . 153, 206, 209, 279, 282, 670, 1135, 1188, 1190, 2029
\tl_gput_right:Nn . 408, 417, 425, 1451
\tl_gset:Nn . 676, 2032
\tl_if_empty:NTF . 2055

98

\tl_if_eq:NnTF 1888, 1906, 1923, 1940, 1957, 1978, 1993, 2013
\tl_new:N 1491, 1774, 1775, 1776, 1777, 1779, 1780, 1781, 1782, 1783
\tl_set:Nn 631, 720, 1646, 1664, 1789, 1790, 1793, 1796, 1797,
1801, 1811, 1812, 1816, 1823, 1824, 1828, 1835, 1836, 1840, 1847, 1851, 1855, 1859,
1863, 1867, 1871, 1875, 1879, 2040, 2049, 2117
\tl_set_eq:NN . 1645, 1805, 1817, 1829, 1841
\tl_use:N 773, 780, 787, 794, 813, 815, 821, 823, 829, 831, 838, 862, 947,
948, 957, 966, 985, 990, 1590, 2057, 2124, 2179, 2182, 2185, 2188, 2191
\tl_use:n . 975
\l_tmpa_tl 719, 720, 728, 767, 770, 773, 931, 933, 934, 947, 1644, 1645, 1650,
1651, 1653, 1657, 1659, 1663, 1665, 1667, 1670, 1674, 1676
\l_tmpb_tl . 1646, 1650, 1660, 1664, 1665, 1677

\ttdefault . 1788

U
\umgla . 5, 83
use commands:

\use:N 722, 733, 801, 839, 1025, 2069, 2077, 2082, 2135, 2143, 2148
\use:n . 1024
\use_ii:nnnnn . 721, 732

\UseTaggingSocket . 683

99

	1 Introduction
	2 Planned
	3 Funding
	4 Acknowledgements
	5 LinguisTiX-base
	6 LinguisTiX-fixpex
	7 LinguisTiX-fonts
	8 LinguisTiX-glossing
	9 LinguisTiX-ipa
	10 LinguisTiX-languages
	11 LinguisTiX-logos
	12 LinguisTiX-nfss
	Index

