The Lincuis’CiX bundle

s

2 February 2026 (vo.8)

A https://ctan.org/pkg/linguistix
@ https://puszcza.gnu.org.ua/projects/linguistix

£ https://matrix.to/#/#linguistix:matrix.org

There are quite a few INTEX packages that support typesetting in linguistics, but
most of them lack a modern ETEX-like users syntax as well as a programming interface.
The LivewisTiX bundle fills this gap. It contains several packages enhancing the
general support for linguistics in EYTEX. This is a comprehensive documentation of the
same comprising of three parts. The first one is the general users manual, the second
one documents the programming interface of the bundle, whereas the last one is the
documented implementation of all the packages.

Contents
1 Introduction
2 Planned
3 Funding
4 Acknowledgements
5 Lineuis'CiX-8ase
Interface... 19; Implementation... 25
6 LineuisTiX-Fixpex
Interface... 20; Implementation... 26
7 LineursCiX-roncs

Interface... 20; Implementation... 28

The LineuisCiX bundle

Copyright © 2025, 2026 s
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version g of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see
https://www.gnu.org/licenses/.

Abstract

3 8 Lineuis'CiX-eLossING
Interface... 20; Implementation...
9 LineursCiX-1pa
Interface... 21; Implementation...
4 10 LineursCiX-Lanecuaees
Interface... 21; Implementation...
11 LineursCiX-Loeos
Interface... 22; Implementation...
5 12 LineuisCiX-NFss
Interface... 22; Implementation...
Index

38

54

64

7T

72

II

14

16

17

85

https://ctan.org/pkg/linguistix
https://puszcza.gnu.org.ua/projects/linguistix
https://matrix.to/#/#linguistix:matrix.org
https://www.gnu.org/licenses/

Dedicated to Renuka who taught me rigour under the guise of linguistics...

1 Introduction

Linguistics is a discipline that studies the phenomenon of language and for this linguists
analyse data from languages across the globe. In order to be able to present the data
that is collected for this, linguists use several representational methods that lead to a
fiasco when their typesetting is considered. In order to understand the complexity of the
task at hand, first, let’s have a look at some of the problem cases. If you are an impatient
reader and are just willing to read the users manual, you may skip reading the current
section and start with section 5 and the ones following it.

1 Phonetic symbols

Speech sounds are the building blocks of many human languages and the data collected
from languages demands an unambiguous method of representation which is served by
the International Phonetic Alphabet. For the longest time, the TIPA package (https:
//ctan.org/pkg/tipa) was the one that produced phonetic symbols in (I2)TEX. Visually,
it matches the default Computer Modern design of ()TEX, but TIPA is not Unicode. It
is set in a legacy encoding. With the recent developments, the New Computer Modern
family supports all the IPA characters (even the ones that are missing in TIPA). They are
created keeping in mind the principles of Knuth’s Computer Modern. Additionally, the
family also supports sans serif (recommended in presentations) and mono (recommended
in coding context) families. It supports two weights, i.e., book and regular respectively.
The book weight is slightly thicker than the regular weight, but the regular one matches
the thickness of the Computer Modern design. Because of the increased thickness, the
former looks better. The current document, for example, is typeset in the book weight of
New Computer Modern. If you are like me, you probably don’t like using non-ETEX-fonts.
The good news is that the requirements of linguistics are very well fulfilled by the recent
developments in the New Computer modern family and it does belong to the fraternity of
ETEX-fonts.

Apart from this, there are some other advantages of the New Computer Modern fonts.
The 1PA distinguishes between [a] and [a], but unfortunately, in Italic shape, the latter is
a variant of the former. E.g., [a\textit{a}] produces ‘[aa]’. Whenever an author uses
Ttalic shape for their transcription and use a, a wrong IPA symbol is printed with most
fonts. This problem was kindly acknowledged by Antonis Tsolomitis, the developer of
New Computer Modern. In the stylistic set dedicated for linguistics, the correct shape
was added to the Italic shape by him. Thus, \ipatext{a\textit{a}} (a command from
LiveursCiX-1pa) renders ‘[aa]’. The package enables New Computer Modern family with
stylistic set of dedicated for 1PA. It also adds the brackets or slashes around the argument
as explained in section g.

A similar problem is with the character g. E.g., [g\textit{g}] produces ‘[gg]. Here,
the situation is the other way round. The upright ‘g’ is not recognised by the 1PA. The
IPA charts generally have the upright version of the Italic shape. To see what this means,
try \ipatext{g\textit{g}}. It produces [gg] and not [gg].

In order to avail all of these features, I have set New Computer Modern as the default
font-family of LineursCiX. The bundle provides options to control these defaults. Users
can use their preferred text and 1PA fonts. There also is an option to use the regular
weight of NewCM instead of the book weight.

https://ctan.org/pkg/tipa
https://ctan.org/pkg/tipa

2 Planned

I plan to develop this bundle further in order to support the typesetting of good quality
examples with interlinear glossing. My model is to imitate the output of the expex package,
but with a modern M TEX-like syntax.

3 Funding

I am a doctorate student without a fellowship (thanks to our education policies!) currently
sustaining only with a full time job unrelated to linguistics that consumes most of my
working hours. At times, it becomes difficult to continue the research, the job and the
passion development projects. LineuisCiX needs funding in order to sustain. If you think
you can support it, you can contact me on the email 1D found on the front page.

As of 2025-05-29, I have recieved funding from the TEX users group’s TEX develop-
ment fund. They have decided to support the development of ‘linguistix-glossing’ (the
logo will be available once the package is ready).

An experimental version of LineuisCrX-cLossine is released on 2026-01-19. This
version is for testing and getting feedback from the community. This marks the completion
of the first grant provided by the TEX users group’s. The project will still continue to
develop further, so funding initiatives will be highly appreciated.

4 Acknowledgements

This package relies the most on the New Computer Modern font family. I would like to
express my gratitude to Antonis Tsolomitis who tirelessly worked on the set of IPA symbols
and brought back the good old charm of TIPA’s design in the modern Unicode world.
I would like to thank Renuka and Avinash who taught me linguistics. They nourished
my passion, helped me pursue my love for the subject as well as the computation that
came along with it. I could have never imagined myself working on a package written in
ETEX3’s syntax. Not so long ago, I used to find it very complicated. It’s mostly Jonathan
Spratte and Florent Rougon’s help (and, at times, scolding :P) that helped me get used
to it. I would also like to mention C.V. Radhakrishnan for being an important part of my
journey in IMTEX. Lastly, to all the free software people who have created this friendly
and supportive world for people by investing their precious time and resources!

Hardly in a week after the initial release, the TEX users group decided to financially
support the development of a planned package in the bundle. I am grateful to them for
their support.

Documentation

The bundle is comprised of several packages that are developed for different purposes. In
order to load all the packages of the bundle, one can issue:

\usepackage{linguistix}

This is the easiest method for getting all of LineuisCiX in one go. But, if you don’t
need all the packages of the bundle, you may load the required packages separately. We
will start with the elementary package that sets up things for other packages of the bundle.

5 Line UIS’CIX-BASG: ATEX 3-interface | Implementation

This package provides a single command that is used in all the other packages of the
bundle. The command is:

\linguistix {(key-value-list)}

\umgla

\LaTeX
\ogLaTeX

We have a single set of keys for the entire bundle. Each package appends keys to the
same set. The argument of this central processor command is the comma-separated
(key-value-1list). So you can load any package of LineuisCiX and use the \linguistix
command. The only exception to this is LineuisCiX-nrss. We will see how it is different
in its section.

6 LINGU.IS'CIX-FIXPEX ATEX 3-interface | Implementation

This package offers a fix for the clash between expex and (lua)-unicode-math. It provides
a single command.

This is a replica of the (lua)-unicode-math-\gla. Since the expex-\gla is more relevant in
linguistics, I set it as the default. If one needs to use (lua)-unicode-math-\gla, they can
use this command.

7 LINGUISCIX—FON(S IMTEX 3-interface | Implementation

This is a package that loads the New Computer Modern family for the entire document.
The package sets fonts for both text and math. It has keys for customisation for both.
Note that just loading this package does not provide any support for 1PA. For that one
needs LineuisCrX-1pa separately.

Antonis suggested a typographic enhancement for the logo of *TEX. The default
logo scales the ‘A’ and that affects the ‘colour’ of the font. This is why I renew the logo
with the code given by Antonis. The original logo is also available with an alternative
command.

IMTEX
BTEX

The package provides only these commands. Let’s now have a look at the keys
provided for the text.

1 Text

Most keys of this package are prefixed with the text in order to distinguish them from
the maths and 1PA ones. There aren’t any commands provided by the package. Most of
the important features of the fontspec packakge are variablised with I3keys.

The ‘old style numbers’ have varying heights. Some numbers have ascenders and
some have descenders (e.g., 6789). According to Bringhurst 2004, this makes them easier
to read in running text. Lining numbers, on the other hand have uniform heights. They
go well with all capital text (rare). Thus, for the general text, I enable this setting by
default in LineuisCiX-roncs.

old style numbers
old style one

newcm
newcm
newcm
newcm
newcm
newcm

sans
mono

regular
regular sans
regular mono

math

math features
math bold
math bold features

Apart from that, the New Computer Modern font family provides an old-style shape
for the number ‘T’ (this exact shapel!), but it is provided as a character variant. Different
fonts may use these arbitrary slots for any character’s alternation. Therefore this setting
should not be loaded blindly. Let’s have a look at the keys that can be employed to
change these behaviours.

{(truth value)} true | false
{(truth value)} true | false

If one wants to disable old style numbers, they may use the 01d style numbers key with
the false value (default is true)’. Note that printing of old style numbers also depends
on whether the font you select has old style numbers or not. The relevant settings are
added by the package to the font automatically, but while selecting the font, make sure
whether the old style table is present in the font or not.

Suppose one wants the alternative shape of number ‘1’ from the New Computer
Modern family, they may use the key old style one (default is false; adding true is
optional).

Let’s have a look at the three way distinction we get because of this.

0123456789 01d style with default 1
0123456789 0ld style with the old 1
0123456789 Lining

These are some keys that come in handy for setting New Computer Modern defaults. All
the necessary values are stored in these. The keys that have regular in their names refer
to the ‘regular’ variants of New Computer Modern fonts. These variants match the colour
and widths of the Latin Modern fonts. One may use these keys to override the defaults.

2 Maths

LineuisCiX-roncs sets maths fonts also. I have used lua-unicode-math package which is
faster and which is said to be the future of maths in ITEX. But, as of now it is highly
experimental. If you want to stick to the stable unicode-math package. The trick is
simply to load the same before loading LineuisCiX. That will suppress the loading of
lua-unicode-math. In order to control the settings related to maths, the following keys can
be used.

{(math font)}

= {(math font features)}
{(bold math font)}

{(bold math font features)}

The math and math bold keys set the respective fonts (i.e., regular and bold fonts for
mathematics respectively). The keys suffixed with features set the font features of the
same.

IThe possible and the default values of keys are given at the right side in the documentation and the defaults
are highlighted in red.

bourbaki's empty set

= {(truth value)} true | false

In ()TEX, the default shape of the ‘empty set’ symbol is: ‘D’, but the symbol used by
the Bourbaki group is still considered more correct and preferred by many (including
me). New Computer Modern Math fonts provide it by default and the slashed zero is
provided as a character variant. Since the Unicode-correct \emptyset is activated by
the package, it always renders: ‘@’ and not: ‘Q’. In order to change this behaviour, one
may use this key and set it to false for getting the slashed-zero of original (E)TEX. Hail
plumbers union, IYKYK! ;-)

\glx

8 LINGU.IS'CIX-GLOSSING ATEX 3-interface | Implementation

This package provides a suit for creating interlinear glosses. It is supported by TEX users
group’s devfund. The package attempts to be an all-in-one solution for glossing. It doesn’t
provide any particular glosses. It only provides a method to create them. Using it, one
may easily create packages like LineuisCiX-Lerpzie to support a set of glosses. The glosses
created by the package use the new code of the INTEX project as they are created in a
tagging aware manner. Each gloss sets a hyperlink to its position in the list of glosses.
Let’s take a look at its commands and options.

{{comma separated list of glosses)}

\glx* {(comma separated list of glosses)}

\newgloss

\renewgloss

\listofglosses

These simple commands take a comma separated list as their argument. All the items
from the list are glosses (either created by the user or provided by a package). Cases of
the items given in the list are ignored. Spaces around the items are ignored. The regular
unstarred command prints the glosses related to each of the item in the comma separated
list, whereas the starred variant prints their expansions. Have a look at the following
example.

\DocumentMetadata{tagging=on,lang={en-GB}}
\documentclass{article}
\usepackage{linguistix}

\begin{document}
\glx{prs,pst}\par
\glx{ prs, pst }\par
\glx{ Prs,pSt}

\glx*{prs,pst}\par
\glx*{ prs, pst }\par
\glx*{ Prs,pST}
\end{document}

The expansions of PST and PRS (from LineuisCiX-Leipzie package) are past and
present respectively. This example produces identical output in three lines for glosses and
the same for its expansions. Notice that there is no format to the cases of the glosses and
similarly one level of spaces are trimmed.

{(gloss)} {(ezpansion)}

{(gloss)} {(ezpansion)}

These commands create a new gloss or renew an existing one. They can be accessed
with the \glx command as explained above. Using \renewgloss mid-document is not
recommended as it will erase the data of page numbers for the previous (renewed) version
of it.

[(setup keys)]

This command prints the list of glosses using the default settings. If the optional argument
is used, the adjustments are made locally only for a single run. E.g.:

Glossary

PRS: present 8 PST: past oL 8

\setupglossing {(keys for formatting glosses)}

format

glos

S

expansion

link

expansion

color

sort

case

style

This command takes one argument, i.e., the keys that control everything regarding the
use of glosses and their expansions. The keys it takes are described in the section that
follows.

1 Setting up the glosses

The following keys can be passed to the command \setupglossing. They control the
printing along with a lot of other things regarding glosses. All the customisation offered
by the package can be accessed via this command.

= {(formatted element gloss/ezpansion)} gloss | expansion

The format key is used for setting the format of either the gloss or the expansion. It’s
a meta key that takes other key-val pair in the argument. The nested keys control the
formatting of the respective elements.

{(formatting commands for glosses)} \textsc{#1}
= {(formatting commands for glosses)}

These keys only work inside the meta key format. They set the commands that print
either the gloss or the expansion. #1 refers to the printed text of them. No special
formatting is applied to expansions by default, but glosses are by default printed in
\textsc.

= {(link colom)} black

This option locally sets the colour for the hyperlinks. By default they are set to the black
colour.

= {(sorting style)} alphabetical | use

This key controls how the keys printed in the list of glosses are ordered. They may be
ordered alphabetically or following the sequence in which they were used, the former
being the default.

= {(case)} lowercase | title case all|title case first

The expansion can be printed in one of these three cases. The default printing happens
in lowercase.

= {(glossary style)} block | inline

The package offers two styles. The inline style prints the glosses and their expansions
without page numbers in the flowing text, whereas the block style, in default settings
prints them in a multicolumn block with an unnumbered section with the glossary name.

columns

page numbers

sectioning

section number

no bold

separator

entry separator

= {(number of columns)} 2

The block style of glosses is printed in multicolumn layout by default. If the number of
columns has to be adjusted, this key shall be used. The default value of it is 2. It works
with only one column too.

= {(truth value)} true | false

By default, page numbers on which a particular gloss was used are printed in the block
style. This can be turned off with this bool key.

= {(section level)} section

In block style, a section heading is printed. In order to choose the level of sectioning,
this command can be used. The default is section which can be changed to any other
desired level. In addition the key allows an option null which suppresses the use of any
section heading.

= {(truth value)} true | false

By default, the section number for the glossary is turned off, but if one wants to print it,
this bool key can be used with the true value.

= {(truth value)} true | false

Generally, the glosses are printed in bold inside glossary. Some fonts don’t have bold
small caps (e.g., Latin Modern). If you need to stick to them, you can use this inverse
bool key with true value in order to obtain non-bold glosses.

= {(separator between glosses or ezpansions)}

This is a context-sensitive key. If used with \glx, then it sets the separator between
the glosses (,. is the default). If used with \glx*, it sets the separator between the
expansions (,, is the default) and if used with the \listofglosses, it sets the separator
between glosses and their expansions (:, is the default).

= {(separator between pairs of glosses and ezpansions)}

Each pair of gloss and its expansion is separated using a token list controlled by this key.
The default is \par.

I0

9 LINGU.IS'CIX-IPA ATEX 3-interface | Implementation

This package sets the fonts exclusively for the 1PA. The commands provided for switching
to the 1PA control all serif, sans serif and typewriter families. This package can be loaded
standalone for loading 1PA fonts as well as some switch commands useful in running
text. New Computer Modern provides a special stylistic set dedicated for linguistics. It
is enabled for 1PA fonts automatically with this package. Only the legally marked up
IPA is affected by the customisation provided by this package. For switching to the 1pA,
LineuisCiX-1pa provides one command with a starred variant.

\ipatext {(phonetic transcription)}
\ipatext* {(phonemic transcription)}

\1lngxipa

ipa
ipa
ipa
ipa
ipa
ipa

newcm
newcm
newcm
newcm
newcm
newcm

sans
mono

regular
regular sans
regular mono

This is a command that resembles with the TIPA command \textipa. I have deliberately
kept it distinct from it so that just in case somebody wants to use their old TIPA
code in a Unicode document, the commands won’t clash (I highly discourage doing
this, though). The command comes with a starred variant. The behaviour of the un-
starred command is to print the argument in brackets for phonetic transcription, e.g.:
\ipatext{ar pPi: er} — [a1 phi: el whereas the starred version prints it in slashes for
phonemic transcription, e.g.: \ipatext*{az pti: er} — /a1 p"i: e1/.

Suppose someone just wants to load the font without the brackets or slashes, they can
use the following command for switching to the IPA without adding the aforementioned.

This also is a command that switches to the 1PA-only features (default as well as user
added). This command, of course, leaks and that’s why should be delimited. E.g., the
following code lines produce [a1 p"i: e1] and /a1 phi: e1/ respectively:

pti: exl}
pti: ex

{\1lngxipa [a1
{\1ngxipa /a1

These keys reset the 1pA-only fonts to New Computer Modern. They can be used even for
resetting to New Computer Modern from another 1PA font. In order to change or reset
to the 1PA defaults these keys can be used. They store the names of the New Computer
Modern font family in the variables concerning 1PA. The keys that contain regular in
their name use the regular version of New Computer Modern that matches the colour of
Latin Modern.

Let’s now see the combined table of font keys provided by both LineursCrX-roncs
and LineursCiX-1pa.

Family

LineuisCiX-ronts

LineursCiX-1pa

Serif

text main font

text upright

text upright features
text bold upright

text bold upright features

ipa main font

ipa upright

ipa upright features

ipa bold upright

ipa bold upright features

Continued on the next page...

II

Family LinecuisCiX-rFoncs LineursCrX-1pa
text italic ipa italic
text italic features ipa italic features
text bold italic ipa bold italic
text bold italic features ipa bold italic features
text slanted ipa slanted
text slanted features ipa slanted features
text bold slanted ipa bold slanted
text bold slanted features ipa bold slanted features
text swash ipa swash
text swash features ipa swash features
text bold swash ipa bold swash
text bold swash features ipa bold swash features
text small caps ipa small caps
text small caps features ipa small caps features
Sans serif text sans font ipa sans font
text sans upright ipa sans upright
text sans upright features ipa sans upright features
text sans bold upright ipa sans bold upright
text sans bold upright features ipa sans bold upright features
text sans italic ipa sans italic
text sans italic features ipa sans italic features
text sans bold italic ipa sans bold italic
text sans bold italic features ipa sans bold italic features
text sans slanted ipa sans slanted
text sans slanted features ipa sans slanted features
text sans bold slanted ipa sans bold slanted
text sans bold slanted features ipa sans bold slanted features
text sans swash ipa sans swash
text sans swash features ipa sans swash features
text sans bold swash ipa sans bold swash
text sans bold swash features ipa sans bold swash features
text sans small caps ipa sans small caps
text sans small caps features ipa sans small caps features
Monospaced text mono font ipa mono font
text mono upright ipa mono upright
text mono upright features ipa mono upright features
text mono bold upright ipa mono bold upright
text mono bold upright features ipa mono bold upright features
text mono italic ipa mono italic
text mono italic features ipa mono italic features
text mono bold italic ipa mono bold italic
text mono bold italic features ipa mono bold italic features
text mono slanted ipa mono slanted
text mono slanted features ipa mono slanted features
text mono bold slanted ipa mono bold slanted

Continued on the next page...

I2

Family LinecuisCiX-rFoncs LineursCrX-1pa

text mono bold slanted features ipa mono bold slanted features

text mono swash ipa mono swash

text mono swash features ipa mono swash features

text mono bold swash ipa mono bold swash

text mono bold swash features ipa mono bold swash features
text mono small caps ipa mono small caps

text mono small caps features ipa mono small caps features

End of the table...

Table 1: Font keys provided by LineuisCiX-ronecs and LincuisCiX-1pa

Apart from these, both the packages provide the following keys for appending to the
extra features for the respective fonts:

e text extra features

e text sans extra features
¢ text mono extra features
e ipa extra features

e ipa sans extra features

e ipa mono extra features

13

I0 LINGUIS’CIX-LANGUAGES ATEX 3-interface | Implementation

This package is intended to provide support for loading Unicode fonts as well as other
necessary settings for using languages. It is a wrapper around the babel package, but it
provides some other useful settings which babel doesn’t agree to add. This package is a
little opinionated and pushes for ‘modern’ practices e.g., Unicode, Lual#TEX, no-markup
multilingual text etc. As of now, only a little support is available. If you want your
language to be supported, you can ask for support at the bug tracker of the repository or
you can send an email in the public mailing list for the project. You may subscribe to the
mailing list at: mail.gnu.org.ua/mailman/listinfo/linguistix-languages. Here, I
list down some IATEX-aspects that may demand some modifications in the default settings.

Fonts: The package works with Unicode and does not worry about legacy methods. If
you want support for your language, first and foremost, you should let me know
standard OpenType fonts suitable for your language. Note that they should be
freely licensed. I won’t support proprietary software with LineuisCrX.

babel support: As mentioned before, the package adds on to the support provided by
package babel. So check if the language files —specifically the modern . ini files—have
the correct settings. Sometimes they may need to undergo native-speakers scrutiny.
Whatever is wrong in babel, may not get corrected in LineursCiX.

Numbers: ITEX uses a lot of counters and all of them, by default, print Latin nu-
merals/characters. E.g., \arabic{pagel} prints the page number in Latin, but
\roman{page} prints the same in Roman convention, i.e., ‘i, ii, ... Does your
language allow them? E.g., Greek doesn’t like Latin alphabets, but doesn’t mind
Roman numerals. Instead of Latin alphabets, Greek prefers to use its own numeral
system. Marathi doesn’t like any of these, but it doesn’t have alternative forms
of numeration, so it changes certain cases drastically. E.g., in nested enumerate
environment, Marathi renews the printing of nested \items as 1, 1.1, 1.1.T and I.I.I.I.
This is reset to defaults when the language is changed. Keeping this in mind, I am
listing down some places where I found non-native numbering (I might have missed
something in which case it deserves to be reported as a bug, so feel free to do so!).

1. Page numbers (in front matter, main matter).

2. Part numbers.

3. Second, third and fourth levels of enumeration.
ExPex: Labels provided by ExPex package (see: tex.stackexchange.com/a/548668).

Typography: Language-specific conventions like using Italic for emphasis. It is a Latin-
script specific convention (note that I don’t mean slanted when I say Italic). Different
languages have different conventions of emphasising (e.g., Marathi uses bold font
for emphasis).

Miscellaneous: Anything other than these.

I am very much willing to support multilingual typesetting for multiple languages,
but I need to know the things mentioned in this list in order to provide the best suited
output. Please consider submitting a detailed feature request. The documentation of
supported languages is in separate PDFs. This documentation only describes the user-side
commands provided by the package.

14

mail.gnu.org.ua/mailman/listinfo/linguistix-languages
tex.stackexchange.com/a/548668

languages

\loadlanguages

\providelanguage

native numbering

strict

logical

{(list of languages)}

{(list of languages)}

This key works with the central key-parser of LineuisTiX, i.e., \linguistix. It accepts
one argument that is a list of languages user wants to load. Unlike babel, the first element
of this list is set as the main language for the document. The command \loadlanguages
has the identical behaviour. In fact, it is a wrapper around the key.

{(language options)} {(language name)}

This is a wrapper command over \babelprovide. The first argument is passed to the
optional argument of \babelprovide and the second one to the mandatory argument of
the same. For more information, please read babel’s manual.

Languages supported by LineuisCiX-Laneuaees are loaded with a package with that
language’s name. If it is absent, the package produces a warning.

= {(strict/logical/off)}

Many languages need native digits. Adding them in a multilingual document is quite
complicated. This key sets the plugs provided for the socket of the same name. Language
packages already take care of them, but if you want to change anything mid-document,
you can use this key. It has three choices available as its value as seen below.

The ‘strict’ plug changes the \1ngx_counter:n command to the counter of the main
language of the document. That way all the counters are printed in the main language.

This plug changes the meaning of \1ngx_counter:n to the \localecounter command
provided by babel. It picks up the surrounding language and uses its native digits. E.g.,
when Marathi is being typeset, it will print counters in Marathi. When it is changed to
English, it will start printing the same in English. Note that this will reflect in table
of contents/tables/figures too. It is called logical numbering because it obeys TEX’s
logic more than what is generally considered the standard. E.g., imagine you have an
English section followed by a Marathi section on the same page. Both of them will follow
their own numerals for default TEX counters. Since both of them are on the same page,
while shipping out, the last active language will be used for processing the page number
(Marathi in this case). This creates a table of contents with Latin numeral as the section
counter, but Marathi numeral as the page number. Only experiments can determine if an
option like this can have valid use-cases, so it is provided. If you use it, be aware that the
results might not be the most pleasant to your aesthetic values. They are so because of

the logic of TEX.

It is equivalent of the noop plug when the other two are not used at all. It is only required
when you want to go back to ITEX defaults. E.g., if you have turned strict native
numbering in some language and you want it to go back to IN\TEX defaults, you may use
this.

I5

\1lngxlogo

IT LING(IIS'CIX-LOGOS ATEX 3-interface | Implementation

This is a small package that provides commands for printing logos of the LineuisCiX
bundle. The logo is printed in New Computer Modern Uncial font. It uses purple colour
for the ‘X’ in it and it is defined using I3color module. It provides one command that
takes an optional argument. Obviously it is ‘protected’ It is as follows:

[(package name)]

The logo of the (package name) from the LineuisCiX bundle is printed with this command,
e.g., \1ngxlogo [fonts] — LineuisCiX-roncs.

Sometimes, the logos might be required to be used in an expandable way, but
optional arguments are not supported in expandable commands. Thus we create separate
commands for separate packages. Even these ones have the 1ngx prefix. It is followed
by the package name, e.g., fonts or ipa and finally the suffix logo. In the context of
hyperref, their behaviour is different than in the context of normal text.

16

I2 LINGHIS'CIX-NFSS ATEX 3-interface | Implementation

This is an extension package to the existing NFSS scheme of IMTEX. The NFSS mainly
works on the four facets of the text, i.e., encoding, family, shape and series. These facets
are reset to default by the \normalfont and \selectfont commands. These commands
work on some internals that are reset with every usage of some commands that set them,
e.g., \rmfamily, \bfseries. There isn’t any way to control this unless some internals
are touched and there might be incidences where one does want to control them, e.g., try
compiling the following code in Lua*TEX.

\documentclass{article}

\begin{document}

\makeatletter
\fontencoding{0T1}\sffamily\itshape\bfseries
\selectfont

\f@encoding\ | \f@family\ | \f@series\ | \f@shape\quad
\normalfont

\f@encoding\ | \f@family\ | \f@series\ | \f@shape
\end{document}

As can be seen in the output, the first line shows the text in OTT encoding, sans family,
bold series and Italic shape. After \normalfont, every aspect of the text is reset to the
default one. The default encoding is TU. We can see TU instead of OTI after \normalfont.
So is the case with family (default: \rmfamily), series (default: \mdseries) and shape
(default: \upshape). This usually is okay, but sometimes it doesn’t fit the requirement.
E.g., the following might be used with the intention of switching from the 1PA font to the
text font, but as can be seen, it doesn’t really change anything.

\documentclass{article}
\usepackage{linguistix-fonts}
\usepackage{linguistix-ipa}
\linguistix{%
text upright {KpRoman-Regular.otf},%
text upright features = {Color={greenl}},%
ipa upright {KpSans-Regular.otf},%
ipa upright features {Color={red}}%
}

\begin{document}
test \lngxipa test \normalfont test
\end{document}

The reason for this is the way \1lngxipa is defined. It resets \rmdefault, \sfdefault
and \ttdefault and uses \normalfont to initialise this new super font family (see:
https://tex.stackexchange.com/a/729805). Setting a ‘super’ font family effectively

I7

https://tex.stackexchange.com/a/729805

\IfEncodingTF
\IfEncodingT
\IfEncodingF
\CurrentEncoding

\IfMetaFamilyTF
\IfMetaFamilyT
\IfMetaFamilyF
\CurrentMetaFamily

\IfSuperFamilyTF
\IfSuperFamilyT
\IfSuperFamilyF
\CurrentSuperFamily

*
*
*
*

\IfSeriesTF
\IfSeriesT
\IfSeriesF
\CurrentSeries

*
*
*
*

\IfShapeTF
\IfShapeT
\IfShapeF
\CurrentShape

*
*
*
*

changes the behaviour of \normalfont permanently. By the way, this is not just something
that LineursTiX has to deal with. This situation may arise whenever one wants to have
a font family command that sets all serif, sans serif and monospaced font families.
LineursCiX-nrss is useful in such cases. It introduces the concept of ‘super’ font family. It
shouldn’t be confused with IXTEX 2.’s ‘meta’ font family. It refers to rm, sf or tt in the
kernel. This package provides control over these facets. Let’s have a look at the macros it
provides.

{{encoding)} {(true code)} {(false code)}
{(encoding)} {(true code)}
{(encoding)} {(false code)}

false otherwise. The \CurrentEncoding macro expands to the current encoding.

{{meta family)} {(true code)} {(false code)}
{(meta family)} {(true code)}
{(meta family)} {(false code)}

If the current meta family matches with the given (meta family), it selects the true
branch; false otherwise. The \CurrentMetaFamily macro expands to the current meta
family.

{(super family)} {(true code)} {(false code)}

{(super family)} {(true code)}

{(super family)} {(false code)}

If the current super family matches with the given (super family), it selects the true
branch; false otherwise. The \CurrentSuperFamily macro expands to the current super
family.

{(series)} {(true code)} {(false code)}
{(series)} {(true code)}
{(series)} {(false code)}

If the current series matches with the given (series), it selects the true branch and false
otherwise. The \CurrentSeries macro expands to the current series.

{(shape)} {(true code)} {(false code)}

{(shape)} {(true code)}

{(shape)} {(false code)}

If the current series matches with the given (shape), it selects the true branch and false
otherwise. The \CurrentShape macro expands to the current shape.

\superfontfamily {(family 1D)} {(rm={(rm NFss)},sf={(sf NFss)},tt={(tt NFss)})}

Every super font family has a (family 1D), even the default one (i.e., default). This
command creates a super family with the given (family 1D)s. The (meta family keys)
argument accepts a list of specific keys, rm, sf and tt. They take the NFSS family names
of these meta families as arguments. One may define a font with, say, \newfontfamily,
pass the NFSSkeys={(key)} option to it and use the (key) in the suitable (meta family
key). Note that using all these keys is not mandatory. A super family may have < 3 keys.

18

\softsuperfontfamily
\softersuperfontfamily

{(1D)}{(encoding, family, series, shape)}
{{1D)}

\softestsuperfontfamily {(1p)}

\softnormalfont
\softernormalfont
\softestnormalfont

These commands loads the super font family with the given (1p). The attributes listed in
the second argument are the only choices available. The required super font family is loaded
and the listed attributes are reset to the ones that were active before. All the four are not
required. The number of attributes may be < 4. The \softernormalfont command ex-
cludes encoding and reactivates all the other attributes, whereas the \softestnormalfont
command reactivates all of them.

{(encoding, family, series, shape)}

Similar to \softsuperfontfamily and friends, these commands switch back to the default
super font family, but reactivate the previously active font attributes. The argument to
\softnormalfont takes the list of the required font attributes. It can have < 4 values.
Now try the following example:

\documentclass{article}
\usepackage{linguistix}
\linguistix{%
text upright features = {Color={greenl}},%
ipa upright features {Color={red}}%
}

\begin{document}

test \lngxipa test \softernormalfont test\par
\makeatletter

\sffamily\itshape\bfseries

\f@family\ | \f@series\ | \f@shape\quad
\softnormalfont{series}

\f@family\ | \f@series\ | \f@shape
\end{document}

Better? :-)

IMTEX 3 interface for programmers

In this section, we take a look at the public NTEX3 commands of the bundle. These can
be considered stable and can be used in production code.

LINGUIS’CIX-BASE Documentation | Implementation

\lngx_set_keys:n (keyval list)

This is the base command for \linguistix. It takes a comma separated list of (keyval
list) and parses it.

19

LineuisCiX- FIXPEX Documentation | Implementation

No I*TEX3 function provided by this package.

LineuisCiX-FonNcs Documentation | Implementation

\g_lngx_old_style_bool

These are the two booleans that are used to check if the old style numbers, the old style

\g_lngx_old_style_one_bool gpe (i.e., ‘1) and Bourbaki’s emtpy set symbol (i.e., ‘@) is asked by the user.

\g_lngx_bourbaki_bool

\lngx_set_main_font:nn {(features)} {()’
\lngx_set_main_font:VV {(features)} {({font)}
()3 (font)}

\1ngx_set_sans_font:nn {(features

\lngx_set_sans_font:VV {(features)} {(font)}

\1lngx_set_mono_font:
\1lngx_set_mono_font:VV
\1lngx_set_math_font:nn
\lngx_set_math_font:VV

™ These commands take two arguments, retrieve the values of the data variables if :VV
variants are used. These are wrapper commands around the font-setting commands of
fontspec and (lua)-unicode-math, i.e., \setmainfont, \setsansfont, \setmonofont and

\setmathfont. The (features) are passed to the optional argument and the (font) is
passed to the mandatory argument of the respective command from the aforementioned
list.

\1lngx_other_main_font:
\1lngx_other_main_font:
:nnn {(language)} {(features)} {(font)}
\1lngx_other_sans_font:
\1ngx_other_mono_font:
\1lngx_other_mono_font:

\1lngx_other_sans_font

nnn {(language)} {(features)} {(font)}
nee {(language)} {(features)} {(font)}

nee
nnn
nee

These commands take three arguments. These are wrapper commands around the font-
setting commands of babel. The (features) are passed to the optional argument and

the (font) is passed to the mandatory argument of the respective command from the
aforementioned list.

LINGUIS’CIX- cLossine Documentation | Implementation

\1lngx_gloss_format:n

{(gloss)}

\1ngx_expansion_format:n {({ezpansion)}

This function is controlled by the key format. Its argument is the gloss or the expansion
itself. According to the definition set in the key, the argument gets printed.

\lngx_gloss_new:nn {(gloss)} {(ezpansion)}

This function creates a new gloss. It is later equated with the \newgloss command.

\lngx_gloss_list: This functions prints the list of glosses and is equated with \1istofglosses.

lngx_multicols {(section title)}

This environment reads an integer variable, i.e., \1__lngx_glossary_columns_int. It
is controlled by the columns key. If its number is more than one (which, by default is
more than one), the multicols environment is used around the content that comes in
between, or else no action is taken. It takes one compulsory argument, i.e., the content of
the section title material. This environment should not be used outside this package.

20

LINGUIS'CIX-I];)A Documentation | Implementation

This package provides a few wrapper functions around fontspec’s commands.

\lngx_set_main_ipa_font:nn {(features)} {(font)}

\1lngx_set_main_ipa_font
\lngx_main_ipa:
Ingx_ipa_rm_nfss

VvV

These functions set the IPA fonts for the serif variants. The (font) is set with (features)
for the serif 1PA. The command to switch to this family is \1ngx_main_ipa:. It can be
accessed with the NFSS family 1ngx_ipa_rm_nfss.

\lngx_set_sans_ipa_font:nn {(features)} {({font)}

\1lngx_set_sans_ipa_font:
\1lngx_sans_ipa:
Ingx_ipa_sf_nfss

Vv

These functions set the 1PA fonts for the sans variants. The (font) is set with (features)
for the sans 1PA. The command to switch to this family is \1ngx_sans_ipa:. It can be
accessed with the NFss family 1ngx_ipa_sf_nfss.

\lngx_set_mono_ipa_font:nn {(features)} {(font)}

\1lngx_set_mono_ipa_font:
\1lngx_mono_ipa:
Ingx_ipa_tt_nfss

Vv

These functions set the 1PA fonts for the mono variants. The (font) is set with (features)
for the mono 1PA. The command to switch to this family is \1ngx_mono_ipa:. It can be
accessed with the NFss family Ingx_ipa_nfss_nfss.

\lngx_ipa: The \1lngx_ipa: command loads the super family lngx_ipa (see the documentation of

Ingx_ipa

LiveursCiX-nrss). The \1ngx_ipa: function has a user-side command \1lngxipa too.

LINGU_IS'CIX- LaNeuaces Documentation | Implementation

Here are the L3 functions defined for LincuisCiX-Laneuaces.

\g_lngx_main_language_tl A t1 that globally stores the main language of the document.

\g_lngx_languages_clist A clist that globally stores the languages that are used.

\1lngx_languages:nn {(language options)} {(language name)}
\lngx_languages:VV (language options tl) (language tl)

These functions read the V-type argument provided to them and pass it to the
\babelprovide command for loading languages.

\lngx_load_languages:n {(list of languages)}

This function loads the languages in LineuisCiX sense.

\1lngx_counter:n This is a developers function provided for printing the counter based on the plug selected.

It changes the meaning according to the active value of native-numbering socket.

\lngx_misc_reset: This function resets a lot of custom settings done by some languages. It has to be used

inside \addto macro provided by the babel package.

21

\1lngx_logo_font:

Ingx_purple_color

LINGUIS'CIX-LOGOS Documentation | Implementation

There are only two EXTEX3 functions provided by this package.

This function switches to the New Computer Modern Uncial font family.

I don’t like the default purple colour of the xcolor package (i.e., [l])- Thus I have created
a new colour using I3color module. It can be accessed using this variable. The color looks

like:

LINGUIS’CIX—NFSS Documentation | Implementation

This subsection discusses the programming interface LineuisCiX-~fss provides.

\c_lngx_default_rmdefault_tl * These tls expand to the default values of the fonts set at the begindocument/end

\c_lngx_default_sfdefault_tl * hook. These are not supposed to be changed and hence they are set with the c prefix.
\c_lngx_default_ttdefault_tl x

\1_lngx_current_encoding_tl
\1_lngx_current_meta_family

x These tls expand to the current values of encoding, meta family, super family,

_tl x series and shape respectively. Note that these are updated time to time by the

\1_lngx_current_super_family_tl * commands that change them (package-internal or NTEX-internal).

\1_lngx_current_series_tl *

\1_lngx_current_shape_tl *

\lngx_if_encoding_p:n * {{encoding)}

\lngx_if_encoding:nTF * {{encoding)}{(true code)}{(false code)}

\lngx_if_meta_family_p:n «* {(meta font family)}
\lngx_if_meta_family:nTF *{(meta font family)}{(true code)}{(false code)}

\lngx_if_super_family_p:n
\1lngx_if_super_family:nTF *
\1lngx_if_series_p:n
\lngx_if_series:nTF

* {(super font family)}

<supe'r font family)}{(true code)}{(false code)}
(

(

semes)}{(t’rue code)}{(false code)}

\lngx_if_shape_p:n * {(shape)}

\lngx_if_shape:nTF * {(sha,pe)}{(t'r‘ue code)}{(false code)}
\lngx_if meta_family_rm_p: =

\lngx_if_meta_family_rm:TF * {(true code)}{(false code)}
\lngx_if _meta_family_sf_p: *

\lngx_if _meta_family_sf:TF * {(true code)}{(false code)}
\lngx_if_meta_family_tt_p: *

\lngx_if _meta_family_tt:TF

* {(true code)}{(false code)}

These conditionals select the true branch if the rm, sf, tt families (respectively) are active,
false otherwise.

22

\lngx_if_series_md_p: *
\lngx_if_series_md:TF % {(true code)}{(false code)}
\1lngx_if_series_bf_p: *
\lngx_if_series_bf:TF % {(true code)}{(false code)}

These conditionals select the true branch if the md, bf series (respectively) are active,
false otherwise.

\lngx_if_shape_up_p: «*
\lngx_if_shape_up:TF x {(true code)}{(false code)}
\lngx_if_shape_it_p: =
\lngx_if_shape_it:TF * {(true code)}{(false code)}
\1lngx_if_shape_sc_p: =«
\lngx_if_shape_sc:TF % {{true code)}{(false code)}
\1lngx_if_shape_ssc_p: *
\1ngx_if_shape_ssc:TF x {(true code)}{(false code)}
\lngx_if_shape_sl_p: «*
\lngx_if_shape_sl:TF * {(true code)}{(false code)}
\1lngx_if_shape_sw_p: «*
\lngx_if_shape_sw:TF % {{true code)}{(false code)}
\1lngx_if_shape_ulc_p: x*
\1ngx_if_shape_ulc:TF {(true code)}{(false code)}

These conditionals select the true branch if the up, it, sc, ssc, sl, sw, ulc shapes
(respectively) are active, false otherwise.

\1lngx_super_font_family:nn {(family 1D)} {(rm={(rm NFss)},sf={(sf NFss)}, tt={(tt nFss)})}

This function takes an (1p) and sets the rm, sf, tt values as requested by the user and
creates a super font family.

\lngx_soft_super_font_family:nn {(1D)}{(encoding, family, series,shape)}
\lngx_softer_super_font_family:n {(1D)}
\lngx_softest_super_font_family:n {(1D)}

The \1lngx_soft_super_font_family:nn sets super family marked by the (1p) and
reactivates the currently active font attributes listed in the second argument. The other
two do the same, but without the list. the softer one omits the encoding and the
softest one reactivate all of them.

\lngx_soft_normal_font:n {(1D)}
\1lngx_softer_normal_font:

\Ingx_softest_mormal font: Quite similar to the soft super family functions, these ones set the default font family and

reactivate the font attributes. The soft one sets the attributes listed in the argument.
The softer one omits encoding and reactivates the rest and the softest one reactivates
all.

23

Implementation

In this section the code of this bundle is documented. Each package in the bundle is
documented in a separate subsection.

LineuisCiX

Provide the package with its basic information.

I

(*package)

\ProvidesExplPackage{linguistix}

{2026-02-02}

{v0.8}

Tk
The ‘LinguisTiX’ bundle: Enhanced
support for linguistics.%

}

When one loads LineuisCiX, all the packages of the bundle are loaded automatically.
That’s the only content of the umbrella package LineuisCiX. All the packages are loaded
conditionally (i.e., only if not loaded already).

32

34

\IfPackageLoadedF
\RequirePackage

- }

\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
(/package)

{

linguistix-base } {
linguistix-base }

linguistix-fonts } {
linguistix-fonts }

linguistix-glossing } {
linguistix-glossing }

linguistix-ipa } {
linguistix-ipa }

linguistix-languages } {
linguistix-languages }

linguistix-leipzig } {
linguistix-leipzig }

linguistix-logos } {
linguistix-logos }

linguistix-nfss } {
linguistix-nfss }

24

\1lngx_set_keys:n

\linguistix

LineuisCiX-Base Documentation | IAMTEX 3-interface

Set the essentials of the package.

35 (*base)

;6 \ProvidesExplPackage{linguistix-base}

37 {2026-02-02}

38 {V0.8}

39 ¥

40 The base package of the ‘LinguisTiX’
4 bundle.’

4 }

I use the I3keys module of E'Tj5X g for creating the key-values used in this bundle. In order
to get a singleton parser for all the packages of the bundle, I have create this parsing
command that is used throughout the bundle.

43
s \cs_new_protected:Npn \lngx_set_keys:n #1 {
s \keys_set:nn { Ilngx_keys } { #1 }

46 }

(End of definition for \lngz_set_keys:n. This function is documented on page 19.)

I equate this command with a user-side macro here and end the LineuisCiX-gase package.

47
s \cs_gset_eq:NN \linguistix \lngx_set_keys:n
40 (/base)

(End of definition for \linguistiz. This function is documented on page 5.)

25

LINGUIS'CIX-FIXPEX Documentation | IAMTEX 3-interface

The unicode-math and lua-unicode-math packages define \gla command which clashes
with the same command defined by the expex package. Of course, the expex-\gla is
more relevant in linguistics. Thus I will save that and provide a new command for the
(lua)-unicode-math-\gla. This is not relevant to people who are not using expex. Thus,
the settings are loaded only conditionally.

so (xfixpex)

s: \ProvidesExplPackage{linguistix-fixpex}

. {2026-02-02}

53 {v0.8}

54 Tk

55 To fix the clash between ‘expex’ and
56 (lua-unicode-math) .%

57 }

This package is useful only if either expex or (lua)-unicode-math is loaded. Otherwise, it is
of no use. Thus, I create a message when either of them is not loaded.

58
so \msg_new:nnn { fixpex } { pkg_not_loaded } {

6o The~ ‘LinguisTiX-fixpex’~ package~ is~ a~ first-aid-

6z for~ resolving~ the~ clash~ between~

6= ‘(lua)-unicode-math’\\ and~ ‘expex’.~ It~ should~ only~
63 be~ used~ if~ at~ least\\ one~ of~ the~ two~ is~ loaded.~
6s Here~ ‘LinguisTiX-fixpex’\\ is~ not~ needed~ as~ you~

65 ‘#1°~ is~ not~ loaded.

66 F
I first start the hook begindocument/before.

67

s \hook_gput_code:nnn { begindocument / before } { . } {

The (lua)-unicode-math package defines \gla after \begin{document}, so the fix needs
to be added after that is done. For that, I start the begindocument/end hook.

6o \IfPackageLoadedTF { expex } {

70 \exp_args:Ne

- \IfPackageLoadedTF {

72 \sys_if_engine_luatex:TF {

73 \IfPackageLoadedF { unicode-math } {
74 unicode-math

75 Ao

76 lua-unicode-math

7 }

78 P A{

79 unicode-math

80 }

8r } A

82 \hook_gput_code:nnn { begindocument / end } { . } {

\umgla This replicates the (lua)-unicode-math-\gla for future use.

83 \cs_gset_eq:NN \umgla \gla

(End of definition for \umgla. This function is documented on page 5.)
The expex-\gla is then equated to the internal function of the package that does the
actual function (Munn and Gregorio 2023).

26

84 \cs_gset_eq:NN \gla \glw@gla
85 }

In the false branch of (lua)-unicode-math, I issue an info message that is not visible on the
terminal, but is printed in the log file.

86 } A
87 \msg_info:nnn { fixpex } { pkg_not_loaded } {
88 (lua)-unicode-math
89 }
9 }
Similarly, I do it for expex.
o 3 Ao
92 \msg_info:nnn { fixpex } { pkg_not_loaded } {
03 expex
94 }
95 }
o6 F

o7 {/fixpex)

27

LineuisCTiX- FONTS Documentation | IAMTEX 3-interface

Package essentials first.

(xfont)
\ProvidesExplPackage{linguistix-fonts}

98
99

100

{2026-02-02}

{v0.8%}

¥
The font-assistant package of the
‘LinguisTiX’ bundle.¥

}

Then, I load unicode-math or lua-unicode-math (depending on the engine used), LineursTiX-
nrss and LineuisCiX-sase (if they are not already loaded).

106

112

113

114

115

116

117

118

\IfPackageLoadedF { linguistix-base } {

}

\RequirePackage { linguistix-base }

\sys_if_engine_luatex:TF {

}

}

\IfPackageLoadedF { unicode-math } {

\IfPackageLoadedF { lua-unicode-math } {
\RequirePackage { fontspec, lua-unicode-math }

}

}

{

\IfPackageLoadedF { unicode-math } {
\RequirePackage { unicode-math }

}

\IfPackageLoadedF { linguistix-fixpex } {

}

\RequirePackage { linguistix-fixpex }

\LaTeX We save the original code for the \LaTeX logo and then renew the command.

\ogLaTeX

old style numbers
\g_lngx_old_style_bool

old style ome
\g_lngx_old_style_one_bool
bourbaki's empty set
\g_lngx_bourbaki_bool

126

127

128

129

130

131

\NewCommandCopy \ogLaTeX \LaTeX

\RenewDocumentCommand \LaTeX { 3} {%

}

L\kern-.81ex\relax
\raisebox{.6ex}{\textsc{a}}\kern-.23ex\relax
\hbox{T}\kern-.4ex\relax
\raisebox{-.5ex}{E}\kern-.3ex\relax

X%

(End of definition for \LaTeX and \ogLaTeX. These functions are documented on page 5.)

I use the .bool_gset:N key-type of I3keys for developing these boolean keys.

136

137 \keys_define:nn { lngx_keys } {

138

139

0ld~ style~ numbers
.bool_gset:N ={

28

\g__lngx_text_main_fonts_prop
\g__lngx_text_main_font_features_tl
text upright

text upright features

text bold upright

text bold upright features
text italic

text italic features

text bold italic

text bold italic features
text slanted

text slanted features

text bold slanted

text bold slanted features
text swash

text swash features

text bold swash

text bold swash features
text small caps

text small caps features

140 \g_lngx_old_style_bool

w),

142 old~ style~ ome

143 .bool_gset:N = {
144 \g_lngx_old_style_one_bool
us X,

u6 bourbaki's~ empty~ set

7 .bool_gset:N ={
18 \g_lngx_bourbaki_bool

149 }

o }

(End of definition for old style numbers and others. These functions are documented on page 6.)

In the first few versions of the package, I used to save the font-names and their features
in token lists, but I found a better way to deal with this later which was using prop lists.
I had released the tls publicly (with a single _ after the scope marker), which means
ideally they should be available forever, but for performance and maintenance the newer
approach is much preferred and hence I decided to shift to prop lists from vo.6. This
time, I am correcting the mistake I made before. The prop lists that save the keys is
not public. It need not be. Only the key-value pairs are public. They are unchanged
anyway. This section describes the implementation of serif text fonts. All these keys
have a common pattern of code. For the convenience of maintenance, I have created a
comma-separated-list and used the elements of this list inside the common code. (See:
https://topanswers.xyz/tex?q=8074#a7689.)

151

52 \prop_gclear_new:N \g__lngx_text_main_fonts_prop

53 \tl_gclear_new:N \g__lngx_text_main_font_features_tl

55 \clist_map_inline:nn {

56 upright,

157 bold~ upright,

158 italic,

159 bold~ italic,

160 slanted,

161 bold~ slanted,

162 swash,

163 bold~ swash,

164 small~ caps

165 } {
All the keys here are prefixed with the word text in order to distinguish them from the
keys provided by the LineuisCiX-ipa package. The argument of these keys should be
expanded for which I use \prop_gput:Nne function. Each #1 is replaced by the items
from clist and the loop is repeated, whereas ##1 is the argument passed to the key by
user.

w6 \keys_define:nn { lngx_keys } {

167 text~ #1

168 .code:n ={
I start a group first. Then clear and set a temporary string variable. I make the text of
the key titlecased as required by fontspec and remove the spaces. Lastly, the word Font
is appended. So, bold italic becomes BoldItalicFont.

169 \group_begin:

29

https://topanswers.xyz/tex?q=8074#a7689

170 \str_clear:N \1_tmpa_str

171 \str_set:Ne \1_tmpa_str {
172 \text_titlecase_all:n { #1 }
173 Font
174 }
175 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
The string is used inside the relevant prop-key and group is ended.
176 \prop_gput:Nne \g__lngx_text_main_fonts_prop
177 { text~ #1 }
78 { \str_use:N \1_tmpa_str = { ##1 } }
179 \group_end:
180 3},
Same is repeated for features.
181 text~ #1~ features
182 .code:n = {
183 \group_begin:
184 \str_clear:N \1_tmpa_str
185 \str_set:Ne \1_tmpa_str {
186 \text_titlecase_all:n { #1 }
187 Features
188 }
189 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
190 \prop_gput:Nne \g__lngx_text_main_fonts_prop
o1 { text~ #1~ features }
102 {
103 \str_use:N \1_tmpa_str = { ##1 }
104 }
195 \group_end:
106 }
07}
198 }

(End of definition for \g__lngz_text_main_fonts_prop and others. These functions are documented on page
II.)

text extra features This key adds to the property that stores the extra features for the serif fonts.

199

200 \keys_define:nn { lngx_keys } {

20 text~ extra~ features

202 .prop_gput:N = \g__lngx_text_main_fonts_prop
203 }

(End of definition for texzt eztra features. This function is documented on page 13.)

30

\g__lngx_text_sans_fonts prop Since the only difference between the upcoming keys is that of the word sans and mono,
\g__lngx_text_sans_font_features_t1 we combine them together and use a nested clist. The rest of the mechanism is identical.
\g__lngx_text_mono_fonts_prop _,,
\g__lngx_text mono_font_features t1 .., \prop_gclear_new:N \g__lngx_text_sans_fonts_prop
text sans upright :6 \tl_gclear_new:N \g__lngx_text_sans_font_features_tl
text sans upright features 207
text sans bold upright zo¢ \Prop_gclear new:N \g__lngx_text_mono_fonts_prop
text sams bold upright features o0 \tl_gclear_new:N \g__lngx_text_mono_font_features_tl

text sans italic

. . o1 1i inline:
text sans italic features \clist_map_inline:nn {

text sans bold italic Z:E:'
text sans bold italic features j. }{
text sans slanted . \clist_map_inline:nn {
text sans slanted features 6 upright,
text sans bold slanted - bold~ upright,
text sans bold slanted features 218 italic,
text sans swash =xo bold~ italic,
text sans swash features 220 slanted,
text sans bold swash bold~ slanted,
text sans bold swash features *** swash,
text sans small caps boli;~swash,
text sans small caps features : } ima caps
text mono upright \keys_define:nn { Ilngx_keys } {
text mono upright features text~ #1~ ##1
text mono bold upright .code:n = {
text mono bold upright features .., \group_begin:
text mono italic 230 \str_clear:N \1_tmpa_str
text mono italic features = \str_set:Ne \1_tmpa_str {
text mono bold italic 232 \text_titlecase_all:n { ##1 }
text mono bold italic features 33 Font
text mono slanted *** }
text momo slanted features % \str_replace_all:Nnn \1_tmpa_str { ~ } { }
text momo bold slanted \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
237 { text~ #1~ ##1 }
text mono bold slanted features . { #es1 }
text mono swash 2a \group_end:
text mono swash features },
text mono bold swash ., text~ #1~ ##1~ features
text mono bold swash features ..o .code:n ={
text mono small caps 243 \group_begin:
text mono small caps features =4 \str_clear:N \1_tmpa_str
245 \str_set:Ne \1_tmpa_str {
246 \text_titlecase_all:n { #1 }
247 Features
248 }
249 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
250 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
251 { text~ #1~ ##1~ features }
252 {
253 \str_use:N \1_tmpa_str = { ####1 }
254 }
255 \group_end:

3I

256 }
257 }
258 }

0
a
©

\keys_define:nn { lngx_keys } {

260 text~ #1~ extra~ features

261 .prop_gput:c

264 }
265 }

=4
g__lngx_text_ #1 _fonts_prop
}

(End of definition for \g__lngz_tezt_sans_fonts_prop and others. These functions are documented on page

12.)

\g__lngx_text_main_font_tl These keys add the parameter that sets the main font for text. They set an internal token
\g__lngx_text_sans_font_tl list which is retrieved later by font setting command.

\g__lngx_text_mono_font_tl

text main font .; \clist_map_inline:nn {
text sans font 268 main,

= { g__lngx_text_ #1 _font_tl }

text mono font 269 sans,
270 IONO
o Ao
.2 \keys_define:nn { lngx_keys } {
273 text~ #1~ font
274 .tl_gset:c
275 }
276

(End of definition for \g__lngz_text_main_font_tl and others. These functions are documented on page II.)

\g__lngx_math_fonts_prop The following are the keys set for math. They use the same mechanism as before.

\g__lngx_math_features_tl

\g__Ingx_math bold_fonts prop .,s \prop_gclear_new:N \g__lngx_math_fonts_prop
\g__Ingx_math_bold_features t1 -0 \tl_gclear_new:N \g__lngx_math_features_tl

math 280

math features =% \prop_gclear_new:N \g__lngx math_bold_fonts_prop
math bold .82 \tl_gclear_new:N \g__lngx_math_bold_features_tl

math bold features %

-8, \keys_define:nn { lngx_keys } {

285 math

286 .tl_gset:N

287 math~ bold

288 .tl_gset:N

289 math~ features

290 .prop_gput:N

2or math~ bold~ features
292 .prop_gput:N

203 }

\g__lngx_math_font_t1,

\g__lngx_math_bold_font_t1,
\g__lngx_math_fonts_prop,

\g__lngx_math_bold_fonts_prop

(End of definition for \g__ingz_math_fonts_prop and others. These functions are documented on page 6.)

newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families.

204

205 \keys_define:nn { lngx_keys } {

32

206 TEWCH

207 .meta:n ={
298 text~ main~ font = { NewCM10-Book.otf },
209 text~ sans~ font = { NewCMSans10-Book.otf I},

300 text~ mono~ font { NewCMMono10-Book.otf },

301 math = { NewCMMath-Book.otf I},
302 math~ bold = { NewCMMath-Bold.otf }
303 }

300 }

(End of definition for newem. This function is documented on page 6.)

newcm sans This is a .meta:n key that sets the default fonts to the sans family.

;06 \keys_define:nn { lngx_keys } {
307 newcm~ sans

308 .meta:n = {

309 main~ font = { NewCMSans10-Book.otf 1},

3t0 sans~ font = { NewCMSans10-Book.otf 1},

31 mono~ font = { NewCMMono10-Book.otf I},

312 math = { NewCMSansMath-Regular.otf 1},
373 math~ bold = { NewCMSansMath-Regular.otf }
34}

315 }

(End of definition for newem sans. This function is documented on page 6.)

newcm mono This is a .meta:n key that sets the default fonts to the monospaced family.
316
;7 \keys_define:nn { 1lngx_keys } {
318 newcm~ mono

319 .meta:n ={

320 main~ font = { NewCMMono10-Book.otf I},

321 sans~ font = { NewCMSans10-Book.otf I},

322 mono~ font = { NewCMMono10-Book.otf 1},

323 math = { NewCMSansMath-Regular.otf 7},
324 math~ bold = { NewCMSansMath-Regular.otf }
325 F

326 }

(End of definition for newem mono. This function is documented on page 6.)

newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.

327

;28 \keys_define:nn { lngx_keys } {

329 newcm~ regular

330 .meta:n ={

331 main~ font { NewCM10-Regular.otf 1},

332 sans~ font = { NewCMSans10-Regular.otf 1},

n

333 mono~ font = { NewCMMono10-Regular.otf 1},
334 math = { NewCMMath-Regular.otf },
335 math~ bold = { NewCMMath-Bold.otf }

336 }

337 }

33

newcm regular sans

newcm regular mono

\1lngx_set_main_font:
\1lngx_set_sans_font:
\1lngx_set_mono_font:
\1lngx_set_math_font:

nn
nn
nn
nn

(End of definition for newem regular. This function is documented on page 6.)

This is a .meta:n key that sets the default fonts to the regular sans variant of the New
Computer Modern family.

338

530 \keys_define:nn { lngx_keys } {

340 newcm~ regular~ sans

s .meta:n =

342 main~ font = { NewCMSans10-Regular.otf 1},
343 sans~ font = { NewCMSans10-Regular.otf },
344 mono~ font = { NewCMMonol10-Regular.otf I},
345 math = { NewCMMath-Regular.otf 1},
346 math~ bold = { NewCMMath-Bold.otf }

347 }

348 }

(End of definition for newem regular sans. This function is documented on page 6.)

This is a .meta:n key that sets the default fonts to the regular monospaced variant of
the New Computer Modern family.

349

;50 \keys_define:nn { lngx_keys } {

55t newcm~ regular~ mono

352 .meta:n ={

353 main~ font = { NewCMMono10-Regular.otf 1},
354 sans~ font = { NewCMSans10-Regular.otf 1},
355 mono~ font = { NewCMMono10-Regular.otf 1},
356 math = { NewCMMath-Regular.otf 1},
357 math~ bold = { NewCMMath-Bold.otf I},

358 }

359 }

(End of definition for newem regular momno. This function is documented on page 6.)
Then we load the bourbaki's empty set boolean. This gets read later while setting
the math font.
360
s6r \1ngx_set_keys:n {
362 bourbaki's~ empty~ set,
Then we load the old style numbers boolean.

363 old~ style~ numbers,
364 newcm

365 }

If LineursCiX-Laneuaces package is loaded, I load the fonts with \babelfont command.
In case it is not loaded, the fonts are set with \setxxxxcommand-type commands provided
by fontspec.

366

;67 \IfPackageLoadedF { linguistix-languages } {

365 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {

369 \setmainfont [#1 1 { #2 }

370 }

s \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {

372 \setsansfont [#1] { #2 }

34

373 }

374 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
. \setmonofont [#1] { #2 }

376 }

377 }

A wrapper command is provided for loading math fonts.

378

570 \cs_new_protected:Npn \lngx_set_math_font:nn #1#2 {
380 \setmathfont [#1] { #2 }

381}

;85 \cs_new_protected:Npn \lngx_set_math_bold_font:nn #1#2 {
;82 \IfPackageLoadedT { lua-unicode-math } {

385 \DeclareMathVersion { bold }
386}
187 \setmathfont [
388 #1,
389 version = { bold }
s00 1 { #2°%}
391 }
All of these commands should expand their arguments, so I provide the appropriate
variants.

392

;03 \cs_generate_variant:Nn \lngx_set_main_font:nn { VV }
;00 \CsS_generate_variant:Nn \lngx_set_sans_font:nn { VV }
;05 \Cs_generate_variant:Nn \lngx_set_mono_font:nn { VV }
;06 \cs_generate_variant:Nn \lngx_set_math_font:nn { VV }

307 \CS_generate_variant:Nn \lngx_set_math_bold_font:nn { VV }

(End of definition for \lngz_set_main_font:nn and others. These functions are documented on page 20.)

__Ingx_build main_font features: These are some internal functions that basically iterate on the prop list items and each of
__lngx build_sans_font_features: them is put to the right of the respective token list. This way only the functions that are
__lngx_build_mono_font_features: added by the user are exported to the font setting command.
__lngx_build_math_font_features:
__Ingx_build_bold_math_font_features: 300 \clist_map_inline:nn {
\g__lngx_text_main_font_features_tl 4o main,
\g__lngx_text_sans_font_features t1 : sans,
\g__lngx_text_mono_font_features_tl 4= MONO
\g__lngx_math_font_features_tl 4°3 P

\g__lngx_bold_math_font_features t1 *** \cs_new_protected:cpn {
405 __lngx_build_ #1 _font_features:

406 } {

407 \prop_map_inline:cn { g__lngx_text_ #1 _fonts_prop } {
408 \tl_gput_right:cn {

409 g__lngx_text_ #1 _font_features_tl
410 } { ###a2 }

.5 \cs_new_protected:Npn __lngx_build_math_features: {

35

s6 \prop_map_inline:Nn \g__lngx_math_fonts_prop {

ar7 \tl_gput_right:Nn \g__lngx_math_features_tl {
418 { ##2 }

419 }

420}

s }

.23 \cs_new_protected:Npn __lngx_build_math_bold_features: {
24 \prop_map_inline:Nn \g__lngx_math_bold_fonts_prop {

425 \tl_gput_right:Nn \g__lngx_math_bold_features_tl {
426 { ##2 }

427 }

428 }

420

(End of definition for __lngz_build_main_font_features: and others.)
Now I start the pre-begindocument hook.

430

s3: \hook_gput_code:nnn { begindocument / before } { . } {

If the boolean for old style numbers is true, I set the Numbers key to 01dStyle. Similarly,
if the NewCM-specific old one is requested, I turn the character-variant on.

42 \lngx_set_keys:n {

433 text~ extra~

434 features ={

435 \bool_if:NT \g_lngx_old_style_bool {

436 Numbers = { 0ldStyle },

437 \bool_if:NT \g_lngx_old_style_one_bool {
438 CharacterVariant ={61}%}

439 }

440 }

441 } H

442 text~ sans~ extra-~

443 features ={

444 \bool_if:NT \g_lngx_old_style_bool {

445 Numbers = { 0ldStyle },

446 \bool_if:NT \g_lngx_old_style_one_bool {
447 CharacterVariant ={61}%}

448 }

449 }

450 }

451 }
All the font features are built using the internal functions and then fonts are set.
452 __lngx_build_main_font_features:

4535 \lngx_set_main_font:VV

454 \g__lngx_text_main_font_features_tl

455 \g__lngx_text_main_font_tl

456 __lngx_build_sans_font_features:

457 \1lngx_set_sans_font:VV

458 \g__lngx_text_sans_font_features_tl

459 \g__lngx_text_sans_font_tl

460 __lngx_build_mono_font_features:
s6: \lngx_set_mono_font:VV
462 \g__lngx_text_mono_font_features_tl

36

\g__lngx_text_mono_font_tl
__lngx_build_math_features:
\1lngx_set_math_font:VV \g__lngx_math_features_tl

\g__lngx_math_font_tl
\IfPackageLoadedT { unicode-math } {
__Ingx_build_math_bold_features:
\1lngx_set_math_bold_font:VV
\g__lngx_math_bold_features_tl
\g__lngx_math_bold_font_tl
}
}

(/font)

37

LineuisCiX-eLossiNG

475

476

(xglossing)

Documentation | IAMTEX 3-interface

\ProvidesExplPackage{linguistix-glossing}

{2026-02-02}
{v0.8}
v
Accessible glossing with LinguisTiX%

}

In order to print the multi-column glossary, I load the \multicol package.

482
483
484

485

\IfPackageLoadedF { multicol } {
\RequirePackage { multicol }

}

Then I declare some variables that will be used for generating the glossing-auxiliary.

486
487
488
489

490

501
502

503

\bool_new:N

\tl_clear_new:
\tl_clear_new:
\tl_clear_new:
\dim_zero_new:

. \dim_zero_new:

\dim_zero_new:
\dim_zero_new:
\int_gzero_new

=2==2=2=22 =

\str_clear_new:
\str_clear_new:
\str_clear_new:
\str_clear_new:
\str_clear_new:
\seq_gclear_new:N \g__lngx_gls_use_order_seq

N
N
N
N
N
N

\1_lngx_expansion_bool
\1_lngx_gloss_separator_tl
\1_lngx_expansion_separator_tl
\1_lngx_glossary_separator_tl
\1_lngx_i_have_dim
\1_lngx_i_need_dim
\1_lngx_remain_dim
\1_lngx_i_hack_dim
\g__lngx_page_ref_int
\1_lngx_gls_language_str
\1__lngx_gls_sorting_order_str
\1__lngx_gls_expansion_case_str
\1__lngx_glossary_style_str
\1__lngx_separator_str

\str_set:Nn \1__lngx_separator_str { gloss }

Glossaries are hyperlinked with complex and cryptic labels. Some readers read the labels
loudly when using assistive technology. In order to dodge that, I add the text to the
Contents key. It uses Ulrike’s ideas: tex.stackexchange.com/a/758083/174620.

504

505

\IfPDFManagementActiveT {
\socket_if_exist:nT { hyp / link / GoTo / Contents } {
\socket_new_plug:nnn { hyp / link / GoTo / Contents }

{ text } {

\pdfstringdef __lngx_tmp_text: { #2 }
\pdfannot_dict_put:nne { link / GoTo } { Contents } {
(__lngx_tmp_text:)

}
}
}
}

After these initial declarations, I move to the socket that controls the description of the
gloss. The socket itself has no arguments.

516

57 \socket_new:nn { lngx / description / gloss } { 0 }

38

tex.stackexchange.com/a/758083/174620

__lngx_gloss_description:

When the socket is assigned the on plug, it defines the expandable internal command
for glossing description. It is then used inside the tagging socket. The same command
is made inactive when the socket is assigned the off plug. By default the off plug is
assigned (this is experimental and may change after reviews from the blind people). The
socket is activated by using it.

5.0 \socket_new_plug:nnn { lngx / description / gloss } { on } {

520 \cs_set:Npn __lngx_gloss_description: { Gloss~ }
sar }

; \socket_new_plug:nnn { lngx / description / gloss }
524 { off } {

525 \cs_set_eq:NN __lngx_gloss_description: \prg_do_nothing:
526}

525 \socket_assign_plug:nn { lngx / description / gloss }
a0 { off }

s3: \socket_use:n { lngx / description / gloss }

(End of definition for __lngz_gloss_description:.)

Then I declare the tagging socket for glossing which takes two arguments. It should
follow the default tagging which is why I use the default plug (which is the only
plug the package does and will offer). The code is based on suggestions by Ulrike
Fischer (github.com/latex3/tagging-project/discussions/975). The E tag is used
for ‘expansion’ which more or less suits the nature of glosses. So it is used here. The
command __lngx_gloss_description: is controlled by the socket and is expandable.
532

s33 \NewTaggingSocket { 1lngx / gloss } { 2 }

534

535 \NewTaggingSocketPlug { lngx / gloss } { default } {

536 \mode_leave_vertical:

537 \tag_mc_end:

538 \exp_args:Ne

530 \tag_struct_begin:n {

540 tag = { Span },
541 E = {

542 __Ingx_gloss_description: #2
543 }

544 }

545 \tag_mc_begin:n {

546 tag = { Span }
547 }

The argument is printed with the package-controlled formatting command. First I check
if the hyperref package is loaded. If it is loaded, the link colour is changed to the one
stored in the variable \g_lngx_gloss_link_color_str (black, by default).

548 \IfPackageLoadedTF { hyperref } {

540 \group_begin:

550 \str_clear:N \1_tmpa_str

551 \str_set:Nn \1_tmpa_str { #1 }
552 \exp_args:Ne \hypersetup {

553 linkcolor = {

39

github.com/latex3/tagging-project/discussions/975

format

link color
\g__Ingx_gloss_link_color_str

sort
\1__Ingx_gls_sorting order_str

554 \exp_not:V \g__lngx_gloss_link_color_str

555 }
556 }
The socket for adding text into the Contents directory is used here.
557 \IfPDFManagementActiveT {
558 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
550 \socket_assign_plug:nn {
560 hyp / link / GoTo / Contents
561 } { text }
562 }
563 }
564 \1ngx_gloss_format:n {
565 \hyperlink { lngx_ #1 _glossary } { #1 }
566 }
567 \group_end:
s+ {
If hyperref is not loaded, the text is simply printed with the formatting command.
560 \1lngx_gloss_format:n { #1 }
570 }

s \tag_mc_end:

52 \tag_struct_end:

573 \tag_mc_begin:n { }

574 }
I assign the default tagging plug to the socket I just defined.

575

576 \AssignTaggingSocketPlug { lngx / gloss } { default }
Now I define the key for adjusting the formatting of the glosses. It controls several keys
contained in a separate set. In short, this key will take another keys as arguments.
577

578 \keys_define:nn { lngx_glossing } {

579 format
se0 .meta:nn = { 1ngx / gloss / format } { #1 },

(End of definition for format. This function is documented on page 9.)

This option sets the colour used for glossing links. It is set to black by default.
581 link~ color
582 .str_gset:N
583 link~ color

\g__lngx_gloss_link_color_str,

584 .initial:n { black },

(End of definition for link color and \g__lngz_gloss_link_color_str. This function is documented on
page 9.)

Glosses can be sorted alphabetically or as they are used. The choice key for that is as
follows. By default glosses are sorted alphabetically.

585 Sort

586 .choices:nn = { alphabetical, use } {
587 \str_set_eq:NN \1__lngx_gls_sorting_order_str
588 \1_keys_choice_str

589 } B

500 Sort

501 .initial:n = { alphabetical },

40

expansion case
\1__Ingx_gls_expansion_case_str

style
\1__lngx_glossary_style_str

columns
\1__Ingx_glossary_columns_int

page numbers
\1__lngx_glosses_page_number_bool

sectioning
\1__lngx_gls_sectioning_str

(End of definition for sort and \1__lngz_gls_sorting_order_str. This function is documented on page 9.)

The expansion can be printed in lower case, title case (with the first letter capitalised for
all the words) or title case (with the first letter capitalised only for the first word). The
default is lower case.

592 expansion~ case

503 .choices:nn ={

504 lowercase, title~ case~ all, title~ case~ first
sos + {

596 \str_set_eq:NN \1__lngx_gls_expansion_case_str
507 \1_keys_choice_str

598 },

500 expansion~ case

600 .initial:n = { lowercase },

(End of definition for expansion case and \l1__lngz_gls_ezpansion_case_str. This function is documented
on page 9.

The glossary can be printed in two styles given below. The default is block.

6or Style

602 .choices:nn = { block, inline } {
603 \str_set_eq:NN \1__lngx_glossary_style_str
604 \1_keys_choice_str

605 },

606 style

607 .initial:n = { block },

(End of definition for style and \1__lngz_glossary_style_str. This function is documented on page g.)

There is an option to change the number of columns used for printing the glossary. It is
controlled here. Default is 2.

608 columns

609 .int_set:N = \1__lngx_glossary_columns_int,
610 columns
6= .initial:n ={2},

(End of definition for columns and \l__lngz_glossary_columns_int. This function is documented on page
10.)

Page numbers can be turned off with the following boolean. By default, they are active.

6= page~ numbers
613 .bool_set:N =

614 \1__lngx_glosses_page_number_bool,
615 page~ numbers
616 .initial:n = { true },

(End of definition for page numbers and \1__lngz_glosses_page_number_bool. This function is documented
on page 10.)

The section used for printing the glossary title is controlled by the following command.
By default, I use \section for printing the title.

6:; sectioning
618 .str_set:N
619 sectioning
620 .initial:n

\1__lngx_gls_sectioning_str,

{ section },

41

section number
\1__lngx_gls_section_number_bool

no bold
\1__lngx_gls_bold_bool

separator
\1__lngx_separator_tl

entry separator
\1__lngx_entry_separator_tl

(End of definition for sectioning and \1__lngz_gls_sectioning_str. This function is documented on page
10.)

This controls if the sectioning level should be numbered or unnumbered. The default is
false.

621 section~ number

622 .bool_set:N = \1__lngx_gls_section_number_bool,
623 section~ number
624 .initial:n = { false },

(End of definition for section number and \1__lngz_gls_section_number_bool. This function is documented
on page 10.)

The no bold key is defined as an inverse boolean. By default the key is set to false
(resulting in the controlled boolean being true).

625 no~ bold

626 .bool_set_inverse:N = \1__lngx_gls_bold_bool,
627 no~ bold
628 .initial:n = { false 1},

(End of definition for no bold and \l1__lngz_gls_bold_bool. This function is documented on page I0.)

The separator between the glosses is controlled using this key. It controls the separator
for inline glosses, expansion of glosses as well as glosses seen in the glossary. Each of these
functions set a string variable which is expanded when this key is used. The default value
of the string variable is gloss and the default value for this key is ,~, which means by
default the separator between glosses is a comma followed by a space.

69 Separator

650 .code:n =

631 \tl_set:cn {

632 1 _1ngx_

633 \str_use:N \1__lngx_separator_str
634 _separator_tl

635 P{# 3}

636 },

637 separator

638 .initial:n =4{ ,~ 3},

(End of definition for separator and \1__lngz_separator_tl. This function is documented on page 10.)

The separator between glossary entries is controlled using this key. The default is a \par
token.

650 ~ entry~ separator

640 .tl_set:N = \1__lngx_entry_separator_tl,
641 entry~ separator

6, .initial:n = { \par }

643 }

(End of definition for entry separator and \l__lngz_entry_separator_tl. This function is documented
on page 10.)

Sometimes language-specific settings are needed. I define the language string variable
with the information retrieved from the lang key of the PDF.

644

625 \IfPDFManagementActiveT {

42

gloss
\1lngx_gloss_format:n

expansion

\1lngx_expansion_format:n

\setupglossing

\newgloss

\1ngx_gloss_new:nn

6s6 \str_set:Ne \1_lngx_gls_language_str {

647 \GetDocumentProperties { document / lang }
648 T

649 }

The formatting of glosses is defined here. By default they are printed in small caps.
650

6s: \keys_define:nn { lngx / gloss / format 1} {

652 gloss

653 .cs_gset_protected:Np = \lngx_gloss_format:n #1,

654 gloss

655 .initial:n

{ \textsc { #1 } },

(End of definition for gloss and \lngz_gloss_format:n. These functions are documented on page 9.)

The formatting of expansions is defined here. There is no change in the printing in the
defaults.

656 expansion

657 .cs_gset_protected:Np = \lngx_expansion_format:n #1,
658 expansion

650 .initial:n = { #1 }

660 }

(End of definition for ezpansion and \lngz_ezpansion_format:n. These functions are documented on page
9)

A wrapper around these options is provided.

661

66 \NewDocumentCommand \setupglossing { m } {
663 \keys_set:nn { lngx_glossing } { #1 }

664 }

(End of definition for \setupglossing. This function is documented on page 9.)

A function that creates new glosses starts here. It takes 2 arguments.

665

666 \cs_new_protected:Npn \lngx_gloss_new:nn #1#2 {
First and foremost, the string received as the first argument should change its case to
lowercase. It is done by \str_lowercase:n. I will use a temporary string variable for
storing the converted value. This needs to be done locally so I start a group and clear the
local str variable.

667 \group_begin:

665 \str_clear:N \1_tmpa_str

660 \str_set:Ne \1_tmpa_str { \str_lowercase:n { #1 } }
Every gloss has its expansion stored in a token list associated to it. The token list is
declared here and it is set to the expansion (i.e., #2).

670 \tl_gclear_new:c {

671 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
672 }

673 \seq_gclear_new:c {

674 g_lngx_ \str_use:N \1l_tmpa_str _pages_seq

675 }

66 \tl_gset:cn {

677 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
o+ { #2 %

43

Whenever a gloss is defined, an internal protected command is defined. It doesn’t take
any argument.

679 \cs_new_protected:cpn {

680 __lngx_gloss_ \str_use:N \1l_tmpa_str :

681 } {
The arguments are passed to the tagging socket. Since the tagging socket doesn’t expand
everything, an exhaustive expansion is performed with the help of \exp_args:Nee. This
is done only if the \DocumentMetadata command is used.

682 \IfDocumentMetadataTF {

683 \exp_args:Nee \UseTaggingSocket

684 { 1ngx / gloss }

685 { \str_use:N \1_tmpa_str }
686 { #2 }

687 } A

688 \IfPackageLoadedTF { hyperref } {

689 \group_begin:

690 \exp_args:Ne \hypersetup

691 linkcolor = {

692 \exp_not:V \g__lngx_gloss_link_color_str
693 }

694 }

605 \IfPDFManagementActiveT {

606 \socket_if_ exist:nT {

697 hyp / link / GoTo / Contents

698 } A

699 \socket_assign_plug:nn {

700 hyp / link / GoTo / Contents

Jo1 } { text }

702 }

703 }

704 \1lngx_gloss_format:n {

705 \hyperlink { lngx_ #1 _glossary } { #1 }
706 }

707 \group_end:

708 } {

. \lngx_gloss_format:n { #1 }

710 }

7 }

I use \label-\ref mechanism for saving the page numbers of the glosses. An internal
integer called \g__lngx_page_ref_int is used to generate unique numbers. The kernel
provides \seq_remove_duplicates:N, but as it iterates on each and every item, it is slow.
The duplicates can be avoided if the items are added to the sequence conditionally and
only when they don’t exist already in the sequence. This way duplicates are not generated
at all. This method is used for adding to the sequences that respectively store the page
numbers of glosses and the order in which they were used. Imagine if a gloss is used twice
on a page, it doesn’t make sense to add the same page number twice. Similarly, if a gloss
is used, it is added to the sequence of used glosses. It doesn’t make sense to add it 10
times again and removing the g duplicates later.

712 \int_gincr:N \g__lngx_page_ref_int

713 \exp_args:Ne

714 \label { 1lngx_gloss_ \int_use:N \g__lngx_page_ref_int }
115 \cs_if_exist:cT {

44

716 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int

77 P A{

718 \group_begin:

719 \tl_clear:N \1_tmpa_tl

720 \tl_set:Ne \1_tmpa_tl {

721 \exp_not:N \use_ii:nnnnn

720 \use:c {

723 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int
724 ¥

725 }

726 \seq_if_in:cVF {

727 g_lngx_ \str_use:N \1_tmpa_str _pages_seq
728 } \1_tmpa_t1 {

729 \seq_gput_right:ce {

730 g_lngx_ \str_use:N \1_tmpa_str _pages_seq
731 A

730 \exp_not:N \use_ii:nnnnn

733 \use:c {

734 r @ lngx_gloss_ \int_use:N \g__lngx_page_ref_int
735 }

736 }

737 }

738 \group_end:

739 }

740 \seq_if_in:NeF \g__lngx_gls_use_order_seq {

741 \str_use:N \1_tmpa_str

742 P {

743 \seq_gput_right:Ne \g__lngx_gls_use_order_seq
244 { \str_use:N \1_tmpa_str }
745 }

746 }

47 \group_end:

748 }

749
50 \cs_gset_eq:NN \newgloss \lngx_gloss_new:nn

(End of definition for \newgloss and \lngz_gloss_new:nn. These functions are documented on page 8.)

\renewgloss Implementing the \renewgloss command is actually quite easy. The definition of \1ngx_-
gloss_new:nn uses only a single command that errors if the control sequence is already
defined, i.e., \cs_new_protected:cpn. In order to renew a gloss, simply undefining the
existing command declared with \1ngx_gloss_new:nn suffices. Later the arguments are
passed to the same command again. No ENTEX3 equivalent for this is provided.

751

752 \NewDocumentCommand \renewgloss { m m } {
53 \cs_undefine:c { __lngx_gloss_ #1 : }
754 \lngx_gloss_new:nn { #1 } { #2 }

755 }

(End of definition for \renewgloss. This function is documented on page 8.)

\glx The command to use a gloss takes three arguments where the first is an optional asterisk.
If it is used, the expansion of the gloss is printed without any special tags, just as plain text.
Otherwise the internal command for printing the gloss is used with the third argument.

45

The third argument is a clist. Any number of glosses can be added to the list. The
action is then repeated on each and every item of the list. The second argument is a
list of options for customising the output. Everything is computed locally so that for
the settings don’t leak. I perform the action on the first item as desired, then the same
is applied to the remaining items with a preceding separator. So that all the items are
separated properly.

756

757 \NewDocumentCommand \glx { s 0{ } m } {

758 \group_begin:

;50 \IfBooleanT { #1 } {

760 \bool_set_true:N \1_lngx_expansion_bool

761 \str_set:Nn \1__lngx_separator_str { expansion }
762 \keys_set:nn { lngx_glossing } {

163 separator = { , \c_space_tl }

764 }

765 }

66 \keys_set:nn { lngx_glossing } { #2 }

67 \tl_clear:N \1_tmpa_tl

65 \seq_clear:N \1_tmpa_seq

60 \seq_set_from_clist:Nn \1_tmpa_seq { #3 }
770 \seq_pop_left:NN \1_tmpa_seq \1_tmpa_tl
7+ \str_set:Ne \1_tmpa_str {

772 \exp_args:Ne \str_lowercase:n {
773 \tl_use:N \1_tmpa_tl

774 }

775 }

776 \bool_if :NTF \1_lngx_expansion_bool {
77 \str_case:Vn \1__lngx_gls_expansion_case_str {
78 { lowercase } {

770 \text_lowercase:n {

780 \tl_use:c {

781 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
782 }

783 }

784 }

285 { title~ case~ all } {

786 \text_titlecase_all:n {

787 \tl_use:c {

788 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
789 }

790 }

791 ¥

792 { title~ case~ first } {

703 \text_titlecase_first:n {

204 \tl_use:c {

705 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
796 }

797 }

798 }

799 }

g0+ {

8or \use:c { __lngx_gloss_ \str_use:N \1_tmpa_str : }

802 }

46

__lngx_dotfill:nnn

so3 \seq_if_empty:NF \1_tmpa_seq {

804 \seq_map_inline:Nn \1_tmpa_seq {

805 \group_begin:

806 \str_clear:N \1_tmpa_str

807 \str_set:Ne \1_tmpa_str {

808 \exp_args:Ne \str_lowercase:n { #i#1 }

809 }

810 \bool_if:NTF \1_lngx_expansion_bool {

8rr \str_case:Vn \1__lngx_gls_expansion_case_str {
812 { lowercase } {

813 \tl_use:N \1_lngx_expansion_separator_tl
814 \text_lowercase:n {

815 \tl_use:c {

816 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
817 }

818 }

819 }

820 { title~ case~ all } {

8ar \tl_use:N \1_lngx_expansion_separator_tl
822 \text_titlecase_all:n {

823 \tl_use:c {

824 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
825 }

826 }

827 }

828 { title~ case~ first } {

829 \tl_use:N \1_lngx_expansion_separator_tl
830 \text_titlecase_first:n {

831 \tl_use:c {

832 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
833 }

834 }

835 }

836 }

837 } {

838 \tl_use:N \1_lngx_gloss_separator_tl

839 \use:c { __lngx_gloss_ \str_use:N \1_tmpa_str : }
840 }

84t \group_end:

842 3

843 }

844 \group_end:

845 }

(End of definition for \gilz. This function is documented on page 8.)

For the dotfill between the gloss and the expansion, I create a custom internal command.
The code is based on user Jonathan P. Spratte’s answer seen here: topanswers.xyz/tex?
q=8155#a7758. The dotfill should not be tagged at all and in fact it should be suppressed
so that the readers don’t go ‘dot, dot, dot, dot ..” (Frank has convinced us forever with
his TUG 2025 talk).

846

857 \cs_new_protected:Npn __lngx_dotfill:nnn #1#2#3 {

848 %% Courtesy: Jonathan P. Spratte

47

topanswers.xyz/tex?q=8155#a7758
topanswers.xyz/tex?q=8155#a7758

849 %% topanswers.xyz/tex?q=8155#a7758 (LPPL)
sso \1__lngx_entry_separator_tl

851 \smallskip

8= \group_begin:

853 \rightskip = Opt plus -1fil \prg_do_nothing:
sss \parfillskip = Opt plus 1fil \prg_do_nothing:
es5 \leftskip = lem plus 1fil \prg_do_nothing:
ss6 \finalhyphendemerits = 0 \prg_do_nothing:
857 \parindent = -lem \prg_do_nothing:
sss \bool_if:NT \1__lngx_gls_bold_bool { \textbf } {

850 \1ngx_gloss_format:n {

860 #1

861 }

862 \tl_use:N \1_lngx_glossary_separator_tl

863}

864 #2

865 \leavevmode

866 \quad

s6; \IfDocumentMetadataT {
868 \tag_mc_end:

869 \tag_struct_begin:n {

870 tag = { Span },
871 actualtext ={12

872 }

873 \tag_mc_begin:n {

874 tag = { Span }
875 }

876 }

877 \cleaders

878 \hbox to 0.44em { \hss . \hss }

879 \hskip 0.5cm plus 1fill \prg_do_nothing:
sso \IfDocumentMetadataT {

881 \tag_mc_end:

882 \tag_struct_end:

883 \tag_mc_begin:n { }

884

885 \quad

sss \kern Opt \prg_do_nothing:

887 \em #3

888 \1__lngx_entry_separator_tl
889 \group_end:

890 }

(End of definition for __lngz_dotfill:nnn.)

1ngx_multicols Here I define the custom multicolumn environment which does nothing if the number of
columns is 1.
891
80> \NewDocumentEnvironment { lngx_multicols } { m } {
803 \int_compare:nNnTF { 1 } < {

804 \int_use:N \1__lngx_glossary_columns_int
895 } {

896 \begin { multicols } {

807 \int_use:N \1__lngx_glossary_columns_int

48

\1ngx_gloss_list:

898 }[#1]

g0+ { #1 }

900 \noindent

sor } {

902 \int_compare:nNnT { 1 } < {

903 \int_use:N \1__lngx_glossary_columns_int
oos F {

905 \end { multicols }

906 }

907 }

(End of definition for ingz_multicols. This function is documented on page 20.)

Finally we come to the command that prints the glosses. First it sets the boolean for
creating the aux file to false.

908

900 \Cs_new_protected:Npn \lngx_gloss_list: {

oo \bool_gset_false:N \g_lngx_trigger_aux_file_bool
I start a group, clear a scratch sequence and set it equal to the sequence that stores the
order of the glosses. If the aux file is read, the aux flag is added to the variable, or else it
is read on the fly.

o \group_begin:

o= \seq_clear:N \1_tmpa_seq

o3 \seq_set_eq:NN \1_tmpa_seq \g__lngx_gls_use_order_seq
If the sorting order is set to alphabetical, the sequence needs to get sorted. For that, I
use INTEX3’s mechanism for sorting strings.

914 \str_case:Vn \1__lngx_gls_sorting_order_str {

015 { alphabetical } {

016 \seq_sort:Nn \1_tmpa_seq {

917 \str_compare:nNnTF { ##1 } > { ##2 } {
918 \sort_return_swapped:

919 Ao

920 \sort_return_same:

921 }

922 }

923 }

924 }

If the style used is inline, the glosses come after the each other. That means the default
entry separator, i.e., \par must be changed. Here I set it to ,~ by default (locally). The
separator between the gloss and the entry is defined as a colon followed by a space.

025 \str_if_eq:VnTF \1__lngx_glossary_style_str { inline } {

926 \group_begin:

927 \keys_set:nn { lngx_glossing } {

928 separator = { \c_colon_str \c_space_tl },
929 entry~ separator ={,~1}

930 }

Then each item from the sequence is popped (from the left). It is then passed to a string
variable to get rid of the catcodes. The string variable is then used in \MakeLinkTarget*.
The gloss is then printed with its separator in bold shape.

031 \tl_clear:N \1_tmpa_tl

032 \str_clear:N \1_tmpa_str

49

033 \seq_pop_left:NN \1_tmpa_seq \1l_tmpa_tl

934 \str_set:NV \1_tmpa_str \1_tmpa_tl

035 \tag_mc_end:

936 \tag_struct_begin:n {

037 tag = { Span },

938 }

039 \tag_mc_begin:n {

940 tag = { Span }

941 }

042 \MakeLinkTarget * {

043 Ingx_ \str_use:N \1l_tmpa_str _glossary

944 }

045 \bool_if:NT \1__lngx_gls_bold_bool { \textbf } {
046 \lngx_gloss_format:n {

947 \tl_use:N \1_tmpa_tl

048 \tl_use:N \1_lngx_glossary_separator_tl
949 }

950 }

o5t \tag_mc_end:

052 \tag_struct_end:

Then it is checked in which case the expansion is requested. According to that the t1 is
printed.

953 \str_case:Vn \1__lngx_gls_expansion_case_str {

954 { lowercase } {

955 \1ngx_expansion_format:n {

056 \text_lowercase:n {

0957 \tl_use:c {

058 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
959 }

960 }

961 }

962 ¥

963 { title~ case~ all } {

964 \1lngx_expansion_format:n {

965 \text_titlecase_all:n {

966 \tl_use:c {

967 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
968 }

969 }

970 }

971 }

972 { title~ case~ first } {

973 \1lngx_expansion_format:n {

074 \text_titlecase_first:n {

975 \tl_use:v {

976 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
977 }

978 }

979 }

080 ¥

981 }

After printing one entry successfully, if there are any more items left in the sequence, they
are printed with the same method, but with an entry separator at the beginning,.

50

082 \seq_if_empty:NF \1_tmpa_seq {

083 \seq_map_inline:Nn \1_tmpa_seq {

984 \group_begin:

085 \tl_use:N \1__lngx_entry_separator_tl

086 \MakeLinkTarget * { lngx_ ##1 _glossary }

087 \textbf {

088 \1lngx_gloss_format:n {

089 ##1

990 \tl_use:N \1_lngx_glossary_separator_tl

991 }

092 }

993 \str_case:Vn \1__lngx_gls_expansion_case_str {
994 { lowercase } {

905 \1lngx_expansion_format:n {

996 \text_lowercase:n {

007 \exp_not:v { g_lngx_ ##1 _expansion_tl }
998 }

999 }

1000 }

1001 { title~ case~ all } {

1002 \1lngx_expansion_format:n {

1003 \text_titlecase_all:n {

1004 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1005 }

1006 }

1007 }

1008 { title~ case~ first } {

t00g \1ngx_expansion_format:n {

1010 \text_titlecase_first:n {

Totr \exp_not:v { g_lngx_ ##1 _expansion_tl }
rora }

1013 }

1014 }

rors }

1016 \group_end:

1017 }

ro18 }

1019 \group_end:

w20+ {

If the style is not inline, then the default block style is assumed and firstly the word
‘glossary’ is printed in a sectioning command controlled by the keys. The \glossaryname
command is provided by babel. If it is undefined, that means the user hasn’t loaded babel.
In that case, I define the command with the string Glossary.

1021 \ProvideDocumentCommand \glossaryname { } { Glossary }

Then the 1ngx_multicols environment starts which doesn’t do anything if the number
of columns is 1.

r022 \begin { 1lngx_multicols } {

1023 \str_if_eq:VnF \1__lngx_gls_sectioning_str { null } {
1024 \use:e {

r025 \exp_not:N \use:c

1026 { \str_use:N \1__lngx_gls_sectioning_str }

1027 \bool_if:NF \1__lngx_gls_section_number_bool { * }
1028 { \exp_not:N \glossaryname }

5I

1029 }

1030 }

1031 }

1032 \seq_map_inline:Nn \1_tmpa_seq {

In this style, even the page numbers are printed along with glosses. We save the page
numbers in a temporary sequence which is locally cleared.

1033 \group_begin:

1034 \seq_clear:N \1_tmpb_seq

1035 \seq_map_inline:cn { g_lngx_ ##1 _pages_seq } {
The pages are hyperlinked with the internal PDF names.

1036 \seq_put_right:Ne \1_tmpb_seq { ####1 }

1037 }

The page numbers are separated using dotfill. Before the glosses, \MakeLinkTarget* is
used.

1038 __lngx_dotfill:nnn {

1039 \MakeLinkTarget * { lngx_ ##1 _glossary }
1040 ##1

rogr Ao

The case of expansion is checked and then the appropriate casing commands are used for
expansions.

1042 \str_case:Vn \1__lngx_gls_expansion_case_str {
r043 { lowercase } {

T044 \1lngx_expansion_format:n {

1045 \text_lowercase:n {

1046 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1047 ¥

1048 }

1049 }

to50 { title~ case~ all } {

TosT \1lngx_expansion_format:n {

1052 \text_titlecase_all:n {

1053 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1054 }

1055 }

1056 }

1057 { title~ case~ first } {

1058 \1lngx_expansion_format:n {

to59 \text_titlecase_first:n {

1060 \exp_not:v { g_lngx_ ##1 _expansion_tl }
1061 }

1062 }

1063 }

1064 }

1065 A

The list of page numbers is printed.

1066 \seq_use:Nn \1_tmpb_seq { ,~ }

1067 ¥

1068 \group_end:

1069 }

1070 \end { lngx_multicols }

071 }

52

w072 \group_end:

1073 }
(End of definition for \lngz_gloss_list:. This function is documented on page 20.)

\listofglosses Here is the command that defines the user-side command for printing the glosses. It
defines the separator by default if not provided. All settings are local in order to avoid
leaking. \1_lngx_separator_tl is the generic string that is used inside the separator
key that sets the separator contextually. This command uses the IXTEX3 function for
printing the glosses.

1074

075 \NewDocumentCommand \listofglosses { 0 { } } {
076 \group_begin:

w77 \str_set:Nn \1__lngx_separator_str { glossary }
w078 \keys_set:nn { lngx_glossing } {

1079 separator = { \c_colon_str \c_space_tl }
o080

s \keys_set:nn { lngx_glossing } { #1 }

w2 \lngx_gloss_list:

083 \group_end:

1084 }

w85 (/glossing)

(End of definition for \listofglosses. This function is documented on page 8.)

53

LINGUIS'CIX-I];)A Documentation | IAMTEX 3-interface

1086 (*ipa)

087 \ProvidesExplPackage{linguistix-ipa}

1088 {2026-02-02}

1089 {v0.8%}

1090 Tk

1091 A package for typesetting the IPA

1002 (International Phonetic Alphabet) from
1093 the ‘LinguisTiX’ bundle.,

r094 }

Then, I load unicode-math or lua-unicode-math (depending on the engine used), LineuisCiX-
nrss and LineuisCiX-sase (if they are not already loaded).

1095

1006 \Sys_if_engine_luatex:TF {

1097 \IfPackageLoadedF { unicode-math } {

1098 \IfPackageLoadedF { lua-unicode-math } {

1000 \RequirePackage { fontspec, lua-unicode-math }
1100 }

1101 }

mo2 F {

1103 \IfPackageLoadedF { unicode-math } {

1104 \RequirePackage { unicode-math }

s}

o6 }

1107

o8 \IfPackageLoadedF { linguistix-base } {
w00 \RequirePackage { linguistix-base }

1110 }

«= \IfPackagelLoadedF { linguistix-nfss } {
@3 \RequirePackage { linguistix-nfss }

un }

1115

6 \IfPackageLoadedF { linguistix-fixpex } {
=7 \RequirePackage { linguistix-fixpex }

ms }

\ipatext The \ipatext command along with its starred variant is developed here.
\ipatext*

1119
20 \NewDocumentCommand \ipatext { s m } {
m: \IfBooleanTF { #1 } {

122 {

123 \1lngxipa
1124 / #2 /
125 }

mee F A

127 {

128 \1lngxipa
1129 [#2]
1130 }

g}

132 }

(End of definition for \ipatezt and \ipatext*. These functions are documented on page II.)

54

\g__lngx_ipa_main_fonts_prop
\g__Ingx_ipa_main_font_features_tl
ipa upright

ipa upright features

ipa bold upright

ipa bold upright features
ipa italic

ipa italic features

ipa bold italic

ipa bold italic features
ipa slanted

ipa slanted features

ipa bold slanted

ipa bold slanted features
ipa swash

ipa swash features

ipa bold swash

ipa bold swash features
ipa small caps

ipa small caps features

These variables store the values for fonts and features for the serif 1PA.

1133

3, \prop_gclear_new:N \g__lngx_ipa_main_fonts_prop
=35 \tl_gclear_new:N \g__lngx_ipa_main_font_features_tl
1136

w37 \clist_map_inline:nn {

1138 upright,

1139 bold~ upright,

1140 italic,

1141 bold~ italic,

g2 slanted,

1143 bold~ slanted,

1144 swash,

1145 bold~ swash,

1146 small~ caps

mr o

All the keys here are prefixed with the word ipa in order to distinguish them from the
keys provided by the LineuisCiX-roncs package. These keys have identical method as

their text counterparts, though.

s \keys_define:nn { lngx_keys } {

1149 ipa~ #1

1150 .code:n ={

151 \group_begin:

1152 \str_clear:N \1_tmpa_str

1153 \str_set:Ne \1_tmpa_str {

1154 \text_titlecase_all:n { #1 }

155 Font

1156 }

1157 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
1158 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
1159 { ipa~ #1 }

1160 { \str_use:N \1_tmpa_str = { ##1 } }
161 \group_end:

1162 3},

1163 ipa~ #1~ features

1164 .code:n ={

1165 \group_begin:

1166 \str_clear:N \1_tmpa_str

1167 \str_set:Ne \1_tmpa_str {

1168 \text_titlecase_all:n { #1 }

1169 Features

170 }

1171 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
1172 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
173 { ipa~ #1~ features }

1174 {

175 \str_use:N \1_tmpa_str = { ##1 }
1176 }

177 \group_end:

1178 }

1179 }

8o }

55

(End of definition for \g__lngz_ipa_main_fonts_prop and others. These functions are documented on page
1I.)

ipa extra features

This key adds to the property that stores the extra features for the serif fonts.
1181

=52 \keys_define:nn { lngx_keys } {

1183 ipa~ extra~ features

1184 .prop_gput:N = \g__lngx_ipa_main_fonts_prop
1185 }

(End of definition for ipa eztra features. This function is documented on page 13.)

56

\g__lngx_ipa_sans_fonts_prop Since the only difference between the upcoming keys is that of the word sans and mono,
\g__lngx_ipa_sans_font_features_tl we combine them together and use a nested clist. The rest of the mechanism is identical.
\g__lngx_ipa_mono_fonts_prop
\g__lngx_ipa_mono_font_features t1 .5, \prop_gclear_new:N \g__lngx_ipa_sans_fonts_prop
ipa sans upright uss \tl_gclear_new:N \g__lngx_ipa_sans_font_features_tl
ipa sans upright features wg \prop_gclear_new:N \g__lngx_ipa_mono_fonts_prop
ipa sans bold upright wo \tl_gclear new:N \g__lngx ipa mono_font_features_tl

ipa sans bold upright features "

ipa sans italic ™ \clist_map_inline:nn {

ipa sans italic features Sans,
. . . 1194 mono
ipa sans bold italic vos ¥ 4
ipa sans bold italic features wos \clist_map_inline:nn {
ipa sans slanted 1o upright,
ipa sans slanted features bold~ upright,
ipa sans bold slanted . italic,
ipa sans bold slanted features oo bold~ italic,
ipa sans swash o slanted,
ipa sans swash features =02 bold~ slanted,
ipa sans bold swash %3 swash,
ipa sans bold swash features bold~ swash,
ipa sans small caps Imz) ima11~ caps
ipa sans small caps features o \keys_define:nn { lngx_keys } {
ipa mono upright ot ipa- #1~ ##1
ipa mono upright features .code:n = {
ipa mono bold upright | \group_begin:
ipa mono bold upright features ... \str_clear:N \1_tmpa_str
ipa mono italic \str_set:Ne \1_tmpa_str {
ipa mono italic features w3 \text_titlecase_all:n { ##1 }
ipa mono bold italic w4 Font
ipa mono bold italic features ** ¥
ipa mono slanted ™ \str_replace_all:Nnn \l_t?pa_str {~3r{12
ipa mono slanted features \prop_gput:cne { g__lngx_lpa_ #1 _fonts_prop }
. 1218 { ipa~ #1~ ##1 }
ipa mono bold slanted o { #aus1 }
ipa mono bold slanted features \group_end:
ipa mono swash },
ipa mono swash features .. ipa~ #1~ ##1~ features
ipa mono bold swash ..., .code:n ={
ipa mono bold swash features iy \group_begin:
ipa mono small caps 1225 \str_clear:N \l_tmpa_str
ipa mono small caps features =2¢ \str_set:Ne \1_tmpa_str {
1227 \text_titlecase_all:n { #1 }
1228 Features
1229 }
1230 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
1231 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1232 { ipa~ #1~ ##1~ features }
1233 {
1234 \str_use:N \1_tmpa_str = { ####1 }
1235 }
1236 \group_end:
1237 }

57

1238 }

1239 }

50 \keys_define:nn { lngx_keys } {

1241 ipa~ #1~ extra~ features

1242 .prop_gput:c =4

1243 g__lngx_ipa_ #1 _fonts_prop
244 }

1245 }

1246

(End of definition for \g__lngz_ipa_sans_fonts_prop and others. These functions are documented on page
12.)

\g__lngx_ipa_main_font_t1l These keys provide keys to set fonts for IPA.
\g__lngx_ipa_sans_font_tl
\g__lngx_ipa_mono_font_tl ., \clist_map_inline:nn {
ipa main font i main,
ipa sans font 50 sans,

ipa mono font sr MONO

mse b A

253 \keys_define:nn { lngx_keys } {

1254 ipa~ #1~ font

1255 -tl_gset:c = { g__lngx_ipa_ #1 _font_tl }
256}

1257

(End of definition for \g__lngz_ipa_main_font_tl and others. These functions are documented on page II.)

ipa newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families for
IPA. Stylistic set 5 of NewCM is dedicated to linguistics. So we use it here. For correct
diacritic placement, we need HarfBuzz renderer. That also is loaded here.

250 \keys_define:nn { lngx_keys } {
1260 ipa~ newcm

=6 .meta:n ={

1262 ipa~ extra-~

1263 features = {

1264 Renderer = {HarfBuzz},

1265 StylisticSet = {05}

1266 },

1267 ipa~ sans~ extra~

1268 features =4

1269 Renderer = {HarfBuzz},

1270 StylisticSet = {05}

1271 },

1272 ipa~ mono~ extra~

1273 features =

1274 Renderer = {HarfBuzz},

1275 StylisticSet = {05}

1276 },

1277 ipa~ main~ font = { NewCM10-Book.otf },
1278 ipa~ sans~ font = { NewCMSans10-Book.otf I},
1279 ipa~ mono~ font = { NewCMMono10-Book.otf }

58

1280 }
1281 }

(End of definition for ipa newem. This function is documented on page 1I.)

ipa newcm sans This is a .meta:n key that sets the default 1PA font to the sans family.
1282
55 \keys_define:nn { lngx_keys } {
1284 ipa~ newcm~ sans

1285 .meta:n ={

1286 ipa~ extra-~

1287 features =4

1288 Renderer = {HarfBuzz},

1289 StylisticSet = {05}

1290 },

1201 ipa~ sans~ extra~

1202 features ={

1203 Renderer = {HarfBuzz},

1204 StylisticSet = {05}

1295 },

1206 ipa~ mono~ extra~

1207 features = {

1208 Renderer = {HarfBuzz},

1200 StylisticSet = {05}

1300 },

1301 ipa~ main~ font = { NewCMSans10-Book.otf I},
1302 ipa~ sans~ font = { NewCMSans10-Book.otf },
1303 ipa~ mono~ font = { NewCMMono10-Book.otf }
304}

1305 }

(End of definition for ipa newem sans. This function is documented on page II.)

ipa newcm mono This is a .meta:n key that sets the default 1PA fonts to the monospaced family.
1306
307 \keys_define:nn { lngx_keys } {
1308 ipa~ newcm~ mono

1309 .meta:n ={

1310 ipa~ extra-~

o features ={

1312 Renderer = {HarfBuzz},

1313 StylisticSet = {05}

1314 },

1315 ipa~ sans~ extra~

1316 features = {

1317 Renderer = {HarfBuzz},

1318 StylisticSet = {05}

1319 1,

1320 ipa~ mono~ extra~

1321 features ={

1322 Renderer = {HarfBuzz},

1323 StylisticSet = {05}

1324 },

1325 ipa~ main~ font = { NewCMMono10-Book.otf },
1326 ipa~ sans~ font = { NewCMSans10-Book.otf 1},

59

1327 ipa~ mono~ font = { NewCMMono10-Book.otf }
1328 }
1329 }

(End of definition for ipa newem mono. This function is documented on page II.)

ipa newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.
1330
133: \keys_define:nn { lngx_keys } {
1332 ipa~ newcm~ regular

1333 .meta:n ={

1334 ipa~ extra-~

1335 features ={

1336 Renderer = {HarfBuzz},

1337 StylisticSet = {05}

1338 },

1339 ipa~ sans~ extra~

1340 features ={

1341 Renderer = {HarfBuzz},

1342 StylisticSet = {05}

1343 },

1344 ipa~ mono~ extra~

1345 features ={

1346 Renderer = {HarfBuzz},

1347 StylisticSet = {05}

1348 }:

1340 ipa~ main~ font = { NewCM10-Regular.otf },
1350 ipa~ sans~ font = { NewCMSans10-Regular.otf 1},
1351 ipa~ mono~ font = { NewCMMonol10-Regular.otf }
1352 }

1353 F

(End of definition for ipa newem regular. This function is documented on page II.)

ipa newcm regular sans This is a .meta:n key that sets the default 1PA fonts to the regular sans variant of the
New Computer Modern family.

1355 \keys_define:nn { lngx_keys } {

1356 ipa~ newcm~ regular~ sans

1357 .meta:n = {

1358 ipa~ extra-~

1359 features = {

1360 Renderer = {HarfBuzz},
1361 StylisticSet = {05}

1362 },

1363 ipa~ sans~ extra~

1364 features ={

1365 Renderer = {HarfBuzz},
1366 StylisticSet = {05}

1367 },

1368 ipa~ mono~ extra~

1369 features ={

1370 Renderer = {HarfBuzz},

60

1371 StylisticSet = {05}

1372 }’

373 ipa~ main~ font = { NewCMSans10-Regular.otf },
1374 ipa~ sans~ font = { NewCMSans10-Regular.otf I},
1375 ipa~ mono~ font = { NewCMMonol0-Regular.otf }
1376 }

1377 }

(End of definition for ipa newem regular sans. This function is documented on page II.)

ipa newcm regular mono Thisis a .meta:n key that sets the default 1PA fonts to the regular monospaced variant
of the New Computer Modern family.
1378
370 \keys_define:nn { lngx_keys } {
1380 ipa~ newcm~ regular~ mono

38 .meta:n =

1382 ipa~ extra-~

1383 features ={

1384 Renderer = {HarfBuzz},

1385 StylisticSet = {05}

1386 },

1387 ipa~ sans~ extra~

1388 features ={

1389 Renderer = {HarfBuzz},

1390 StylisticSet = {05}

1391 },

1392 ipa~ mono~ extra~

1303 features = {

1304 Renderer = {HarfBuzz},

1305 StylisticSet = {05}

1396 },

1307 ipa~ main~ font = { NewCMMono10-Regular.otf },
1308 ipa~ sans~ font = { NewCMSans10-Regular.otf 1},
1300 ipa~ mono~ font = { NewCMMonol0-Regular.otf }
oo}

ot }

(End of definition for ipa newem regular momo. This function is documented on page II.)
We set the ipa newcm key by default.

1402

103 \1ngx_set_keys:n {ipa~ newcm}

\lngx_set_main_ipa_font:nn Here, I develop font-setting commands for 1PA. These commands are set with
\lngx_main_ipa: \setfontfamily, so they keep overriding the definitions of the same command names.
lngx_ipa_rm_nfss These commands set NFSs families that we use later for setting the 1PA fonts. These
\lngx_set_sans_ipa_font:nn functions and NFss families are public, but manipulating them has effects (mostly desired)
\lngx_sans_ipa: at several other places, so use them with caution.
Ingx_ipa_sf_nfss
\lngx_set_mono_ipa_font:nn ..; \cs_new_protected:Npn \lngx_set_main_ipa_font:nn #1#2 {

\1lngx_mono_ipa: w06 \setfontfamily \lngx_main_ipa: [
lngx_ipa_tt_nfss wuo7 #1,
1408 NFSSFamily = { 1lngx_ipa_rm_nfss }
moo 1 { #2 %
o }

61

Ingx_ipa

\1lngxipa
\1lngx_ipa:

1411
4= \cs_new_protected:Npn \lngx_set_sans_ipa_font:nn #1#2 {
413 \setfontfamily \lngx_sans_ipa: [

1414 #1,

1415 NFSSFamily = { 1lngx_ipa_sf_nfss }
1416] { #2 }

1417 }

1418
4o \CS_new_protected:Npn \lngx_set_mono_ipa_font:nn #1#2 {
2o \setfontfamily \lngx_mono_ipa: [

1421 #1,

1422 NFSSFamily = { lngx_ipa_tt_nfss }
wes 1 { #2 %

124

126 \CS_generate_variant:Nn \lngx_set_main_ipa_font:nn { VV }
127 \CS_generate_variant:Nn \lngx_set_sans_ipa_font:nn { VV }
1428 \CsS_generate_variant:Nn \lngx_set_mono_ipa_font:nn { VV }

(End of definition for \lngz_set_main_ipa_font:nn and others. These functions are documented on page 21.)

Here, I create a ‘super font family’ with \1ngx_super_font_family:nn, a macro provided
by LineuisCiX-nrss. Please see the documentation of that package for more information.
Note that 1lngx_ipa is a super family responsible for all the 1PA-related functions of the
package. It is associated with the NFss families defined just now for the IPA.

1420

130 \1ngx_super_font_family:nn { lngx_ipa } {

43t W = { 1lngx_ipa_rm_nfss },

32 st = { lngx_ipa_sf_nfss },
u3; tt = { lngx_ipa_tt_nfss }
w3}

(End of definition for ingz_ipa. This function is documented on page 21.)

I use \1ngx_softer_super_font_family:n provided by LineuisCiX-~rssfor defining this
switch to the 1PA.

1435

136 \cs_new_protected:Npn \lngx_ipa: {

437 \1ngx_softer_super_font_family:n { lngx_ipa }
1438 }

1439

10 \CS_gset_eq:NN \lngxipa \lngx_ipa:

(End of definition for \lngzipa and \lngz_ipa:. These functions are documented on page II.)

Now, I have used the exact same method that I described in the implementation of
LineursCiX-rones for setting the size variants. This is done with lazy evaluation, just
before \begin{document}.

1441

122 \clist_map_inline:nn {

1443 main,

1444 sans,

1445 mono

1446 } {

w7 \cs_new_protected:cpn {

62

1448 Ingx_build_ #1 _ipa_font_features:

1449 } A

1450 \prop_map_inline:cn { g__lngx_ipa_ #1 _fonts_prop } {
1451 \tl_gput_right:cn {

1452 g__lngx_ipa_ #1 _font_features_tl
1453 T { #uu#2 }

uss \hook_gput_code:nnn { begindocument / before } { . } {
uso \lngx_build_main_ipa_font_features:

ueo \lngx_set_main_ipa_font:VV

1461 \g__lngx_ipa_main_font_features_tl

1462 \g__lngx_ipa_main_font_tl

1463 \1ngx_build_sans_ipa_font_features:

u6s \lngx_set_sans_ipa_font:VV

1465 \g__lngx_ipa_sans_font_features_tl
1466 \g__lngx_ipa_sans_font_tl

467 \1ngx_build_mono_ipa_font_features:
468 \lngx_set_mono_ipa_font:VV

1469 \g__lngx_ipa_mono_font_features_tl
1470 \g__lngx_ipa_mono_font_tl

ur

e {/ipa)

63

\g_lngx_main_language_tl

\g_lngx_languages_clist

\1lngx_languages:nn
\providelanguage

LineuisCiX-LaNecuaees Documentation | IATEX 3-interface

w73 (*lang)
u7s \ProvidesExplPackage{linguistix-languages}

1475 {2026-02-02}

1476 {v0.8%}

1477 ¥

1478 An assistant package for automatically
1479 loading fonts and more settings for
1480 languages.’

1481 }

LineuisCiX-sase is loaded (if not already done) for the key-value parser.

1482

us; \IfPackageLoadedF { linguistix-base } {

1484 \RequirePackage { linguistix-base }

1485 }

The babel package is loaded with provide*=+* option as it mandates the use of modern
mechanism.

1486

us; \IfPackageLoadedF { babel } {

uss \RequirePackage [provide * = *] { babel }

189 }

I declare a t1 that I will use for storing the main language. It is publicly available.

1490

uor \tl_new:N \g_lngx_main_language_tl
(End of definition for \g_lngz_main_language_tl. This function is documented on page 21.)

I declare a clist that I will use for storing languages. It is publicly available.

1492

1403 \clist_new:N \g_lngx_languages_clist
(End of definition for \g_lngz_languages_clist. This function is documented on page 21.)

I develop a wrapper macro with a :VV variant.

1494

105 \Cs_new_protected:Npn \lngx_languages:nn #1#2 {

1496 \babelprovide [#1] { #2 }

1497 }

1498

100 \CS_generate_variant:Nn \lngx_languages:nn { VV }

00 \CS_gset_eq:NN \providelanguage \lngx_languages:nn

(End of definition for \lngz_languages:nn and \providelanguage. These functions are documented on page
2I.)

The babel package produces an ‘info’ message if the fonts are not set with \babelfont.
Mostly they aren’t set with this mechanism, so this warning is inevitable in default situ-
ations. Imagine loading LineuisTiX-roncs first and then loading this package. The fonts
are already set with \setmainfont and friends. Thus we will be prompted with this warn-
ing always. In order to avoid that, I renew the wrapper functions around \setmainfont
to \babelfont. Note that this only affects the usage when LineuisCiX-roncs is loaded. If
you use LincuisCiX-Laneuaces and then use \setmainfont-like commands, you will get
babel’s warning and I have no intention to suppress that behaviour.

64

1501
0o \IfPackageLoadedTF { linguistix-fonts } {
03 \CS_gset_protected:Npn \lngx_set_main_font:nn #1#2 {

1504 \babelfont { rm } [#1] { #2 }

1505 }

06 \CS_gset_protected:Npn \lngx_set_sans_font:nn #1#2 {
1507 \babelfont { sf } [#1 1 { #2 }

1508 }

00 \CS_gset_protected:Npn \lngx_set_mono_font:nn #1#2 {
1510 \babelfont { tt } [#1 1 { #2 }

s)

s b

i3 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
1514 \babelfont { rm } [#1] { #2 }

1515 }

6 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
1517 \babelfont { sf } [#1] { #2 }

8}

9 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
1520 \babelfont { tt } [#1 1 { #2 }

e}

1522 }

\lngx_other_main_font:nnn The following macros set fonts for other languages using the \babelfont command.
\1lngx_other_sans_font:nnn
\lngx_other_mono_font:nnn .., \cs_gset_protected:Npn \lngx_other_main_font:nnn #1#2#3 {

525 \babelfont [#1] { rm } [#2] { #3 }

1526 F

1527

528 \CS_gset_protected:Npn \lngx_other_sans_font:nnn #1#2#3 {

m20 \babelfont [#1] {sf } [#2] { #3 }

1530 }

532 \CS_gset_protected:Npn \lngx_other_mono_font:nnn #1#2#3 {
33 \babelfont [#1] { tt } [#2] { #3 }
1534 }

536 \CS_generate_variant:Nn \lngx_other_main_font:nnn { nee }
1537 \Cs_generate_variant:Nn \lngx_other_sans_font:nnn { nee }
538 \CS_generate_variant:Nn \lngx_other_mono_font:nnn { nee }

(End of definition for \lngz_other_main_font:nnn, \lngz_other_sans_font:nnn, and \lngz_other_mono_-
font:nnn. These functions are documented on page 20.)

\1ngx_load_languages:n I provide a simple macro that only does the job of loading languages, both in B*TEX3
\loadlanguages style, as well as the in the plain style.
1539
40 \CS_new_protected:Npn \lngx_load_languages:n #1 {
s \lngx_set_keys:n { languages = { #1 } }
542}
1543

4 \CS_gset_eq:NN \loadlanguages \lngx_load_languages:n

(End of definition for \lngz_load_languages:n and \loadlanguages. These functions are documented on
page 21.)

65

I equate the \arabic command to a new command I want to provide. This is done in
order to get control over the default FXTEX counters. The command is manipulated when
plugs are activated.

\1lngx_counter:n

1545
46 \CS_gset_eq:NN \lngx_counter:n \arabic

(End of definition for \lngz_counter:n. This function is documented on page 21.)
Now all the default counters are changed from \arabic to \1ngx_counter:n.

1547

548 \cs_set:Npn \thechapter {

1540 \1lngx_counter:n { chapter }

50 }

50 \cs_set:Npn \thesection {

552 \1lngx_counter:n { section }

1553 }

555 \cs_set:Npn \thesubsection {

1555 \1lngx_counter:n { subsection }

1556 F

1557 \cs_set:Npn \thesubsubsection {

1558 \1lngx_counter:n { subsubsection }

1559 }

60 \Ccs_set:Npn \theparagraph {

5561 \1lngx_counter:n { section }

1562 F

565 \cs_set:Npn \thesubparagraph {

1564 \1lngx_counter:n { section }

1565 }

566 \cs_set:Npn \thepage {

1567 \1lngx_counter:n { page }

1568

560 \cS_set:Npn \thefigure {

1570 \1lngx_counter:n { figure }

w7 }

572 \cs_set:Npn \thetable {

1573 \1lngx_counter:n { table }

1574 }

575 \cs_set:Npn \thefootnote {

1576 \1lngx_counter:n { footnote }

1577 }

578 \cs_set:Npn \thempfootnote {

1579 \1lngx_counter:n { mpfootnote }

580

8 \cs_set:Npn \theequation {

82 \lngx_counter:n { equation }

1583

Here, I define the socket 1ngx/native-numbering.

1584
585 \socket_new:nn { lngx / native-numbering } { 0 }

strict This plug sets the numbering strictly to the main language. If used, the function \1ngx_-
counter:n is changed to the respective \xxxxcounter command (where xxxx stands for
the main language of the document).

66

logical

off

native numbering

55, \socket_new_plug:nnn { lngx / native-numbering }

1588 { strict } {

550 \cs_gset_eq:Nc \lngx_counter:n {

1590 \tl_use:N \g_lngx_main_language_tl counter
mor

1592 }

(End of definition for strict. This function is documented on page I5.)

Here, I define the logical plug for 1ngx/native-numbering. The mechanism is pretty
similar as the one used for strict, but here I don’t renew it to the main language counter,
but instead I use the \localecounter command provided by the babel package. The
counters are then printed contextually (and TgX-logically).

1593

504 \Socket_new_plug:nnn { lngx / native-numbering }

1505 { logical } {

06 \CS_gset_protected:Npn \lngx_counter:n ##1 {
1507 \localecounter { digits } { ##1 }

1598 }

1599 }

(End of definition for logical. This function is documented on page 15.)

If the off plug is selected, then native digits are not needed. Thus the \1ngx_counter:n
is set to the unmodified \arabic again.

1600

wor \socket_new_plug:nnn { lngx / native-numbering} { off } {
60> \cs_gset_eq:NN \lngx_counter:n \arabic

1603 }

(End of definition for off. This function is documented on page 15.)

The three choices for the native numberingkey,i.e., strict, logical and off are defined

here. All of them activate the plugs of their name with the 1ngx/native-numbering
socket.

1604

o5 \CS_generate_variant:Nn \socket_assign_plug:nn { ne }

1606

607 \keys_define:nn { lngx_keys } {

608 native~ numbering

1609 .choices:nn = { strict,logical,off } {

1610 \socket_assign_plug:ne { lngx / native-numbering } {
1611 \str_use:N \1_keys_choice_str

1612 }

1613 \socket_use:n { lngx / native-numbering }

o1},

Similarly, we set the default value to on.

1615 native~ numbering
1616 .default:n = { strict }
1617 }

(End of definition for native numbering. This function is documented on page 15.)

67

\lngx_misc_reset:

languages

Despite having sufficient control with the two plugs, there are some additional settings
required by some languages that are often not needed by most others. E.g., Marathi
renews the way enumerated lists are printed and that is supposed to be renewed when
the language is changed. I provide a shorthand to be used for resetting such settings. It
can be used in the packages of languages that don’t need special settings.

1618

1619 \CS_new_protected:Npn \lngx_misc_reset: {

620 \cs_set:Npn \theenumii { \alph { enumii } }

62 \cS_set:Npn \labelenumii { (\theenumii) }
622 \cs_set:Npn \theenumiii { \roman { enumiii } }
1623 \cs_set:Npn \labelenumiii { \theenumiii . }
w624 \cs_set:Npn \theenumiv { \Alph { enumiv } }
1625 \cs_set:Npn \labelenumiv { \theenumiv . }

w26 \IfPackageLoadedT { expex } {

1627 \lingset { labeltype = alpha }
1628 }

620 \csS_gset_eq:NN \emph \textit

630 F

(End of definition for \lngz_misc_reset:. This function is documented on page 21.)

Here, I write a message to be issued when user loads an unsupported language.
1631

632 \msg_new:nnn { linguistix-languages } { no_support } {

w33 ‘#1°~ is~ not~ supported.\\

1634 If~ you~ want~ it~ to~ be~ supported,~ please~ report~

1635 to~ the~ maintainers.

1636 F

I use the .code:n type for developing the languages key.

1637

w38 \keys_define:nn { lngx_keys } {

1639 languages

1640 .code:n =

I pass the argument of this key to a global clist. It is stored for public use.

1641 \clist_gset:Nn \g_lngx_languages_clist { #1 }

Since this is a public clist for accessing the names of the languages, I copy it to a
temporary one so that the items of public interest are not lost during the operations.
1642 \clist_set_eq:NN \1_tmpa_clist \g_lngx_languages_clist

I check if the clist is empty or not. If it is empty, that means the user used the key
without a value. In that case, babel already loads an ‘info’-message saying that no language
is loaded. So we ignore the branch and silently move to the false branch.

1643 \clist_if_empty:NF \1_tmpa_clist {

In the false branch, I pop out the first element from the clist to \1_tmpa_t1. This is the
first language passed by the user. In LineuisCiX-Laneuaees, I assume that it is intended

to be the first language. It is important to pop the element out because the settings used
for the main language are different than the ones used for other languages.

1644 \clist_pop:NN \1_tmpa_clist \1_tmpa_tl

Since this t1 stores the language that is going to be the main one, I equate it to another
public t1 that I will be using later in language files.

1645 \tl_set_eq:NN \g_lngx_main_language_tl \1_tmpa_tl

68

In \1_tmpb_t1, I save the options that need to go with the language stored in \1_tmpa_t1.
The package used to have onchar option loaded conditionally with LuaATEX, but to
avoid potential clashes, now it has moved to the individual package files of languages. Now
I directly load the main option which makes the concerned language the ‘main’ language
of the document.

1646 \tl_set:Ne \1_tmpb_tl {

1647 main,

To load the data from ini files, I use the import parameter.

1648 import

1649 }

I use the \babelprovide wrapper we saw earlier with the values of the first language.
1650 \1lngx_languages:VV \1_tmpb_tl \1_tmpa_tl

I scan if the package for this language is available. If it is, it is loaded.

1651 \file_if_exist:nTF { linguistix - \l_tmpa_tl . sty } {

1652 \exp_args:Ne \RequirePackage

1653 { linguistix - \1_tmpa_t1l }

1654 P {

If it is not, I issue the no_ldf warning message. It takes one argument that is the name
of the language. It is extracted using the V argument type.

1655 \msg_warning:nnV { linguistix-languages }
1656 { no_support }

1657 \1_tmpa_tl

1658 }

The temporary tls are cleared.

1650 \tl_clear:N \1_tmpa_tl

1660 \tl_clear:N \1_tmpb_tl

I again check if the clist is empty. If it is, it means the user is typesetting a monolingual
document as they don’t need any other language than the ‘main’ one.

1661 \clist_if_empty:NF \1_tmpa_clist {

Now I have to repeat the same actions for all the pending languages. I do it with
\clist_map_inline:Nn.

1662 \clist_map_inline:Nn \1_tmpa_clist {

1663 \clist_pop:NN \1_tmpa_clist \1_tmpa_tl

1664 \tl_set:Ne \1_tmpb_tl { import }

1665 \1lngx_languages:VV \1_tmpb_t1l \1_tmpa_tl
1666 \file_if_ exist:nTF {

1667 linguistix - \1_tmpa_tl . sty

1668 } {

1669 \exp_args:Ne \RequirePackage

1670 { linguistix - \1_tmpa_tl }
1671 o

1672 \msg_warning:nnV { linguistix-languages }
1673 { no_1ldf }

1674 \1_tmpa_tl

1675 }

1676 \tl_clear:N \1_tmpa_tl

1677 \tl_clear:N \1_tmpb_tl

1678 }

1679 }

69

1680 }
1681 }
1682 }

1683 (/Iang}

(End of definition for languages. This function is documented on page 15.)

70

LineuisCiX-Loeos Documentation | IATEX 3-interface

w68, (*logos)
55 \ProvidesExplPackage{linguistix-logos}

1686 {2026-02-02}

1687 {v0.8%}

1688 {%

1689 Logos of the ‘LinguisTiX’ bundle.%
1690 }

The fontspec package (if not already loaded).

169- \IfPackageLoadedF { fontspec } {
1603 \RequirePackage { fontspec }
604 F

\1lngx_logo_font: This is a command that switches to the New Computer Modern Uncial font family.

1695

w06 \newfontfamily \lngx_logo_font: [

16o; UprightFont = { NewCMUnciall0-Book.otf 7},
wos UprightFeatures ={

1699 SizeFeatures ={

1700 {

1701 Size = {-8},

1702 Font = {NewCMUncialO8-Book.otf}
1703 1,

1704 {

705 Size = {8-},

1706 Font = {NewCMUnciallO-Book.otf}
1707 }3

1708 }

o9),

710 BoldFont = { NewCMUnciall0-Bold.otf },

7z BoldFeatures ={

712 SizeFeatures = {

713 {

— Size = {-8},

715 Font = {NewCMUncialO8-Bold.otf}
1716 },

1717 {

1718 Size = {8-},

1719 Font = {NewCMUnciall0-Bold.otf}
1720 },

1721 }

722}

1723 1{ NewCMUnciall0-Book.otf }

(End of definition for \lngz_logo_font:. This function is documented on page 22.)

1ngx_purple_color The following defines the lngx_purple_color.

1724

25 \color_set:nn { lngx_purple_color } { blue ! 50 ! red }

(End of definition for ingz_purple_color. This function is documented on page 22.)

71

\lngxlogo Here, I define the commands for printing various logos.

727 \NewDocumentCommand \lngxlogo { 0{} } {%
28 \group_begin:

1729 \1ngx_logo_font:

1730 LinguisTi

1731 \color_group_begin:

732 \color_select:n { lngx_purple_color }
1733 X

734 \color_group_end:

1735 \IfBlankF { #1 } { - #1 }

736 \group_end:

1737 }

(End of definition for \lngzlogo. This function is documented on page I16.)

Since we need expandable commands, I use the non-protected function, \cs_new:Npn for
defining them.

1738

730 \cs_new:Npn \lngxpkg {

1740 \IfPackageLoadedTF { hyperref } {

1741 \texorpdfstring {
1742 \1lngxlogo

1743 £

1744 LinguisTiX

1745 }

1746 A

1747 \1lngxlogo

1748 }

1749 }

Here, I define all the logos with a clist. The package names are stored in the clist and
then used at appropriate positions.

75: \clist_map_inline:nn {

1752 base,examples,fixpex,fonts,ipa,languages,logos,nfss,

1753 marathi,british,american,english,greek,malayalam,glossing,
1754 leipzig

1755 } {

#1 is substituted with the package name. First, for the command-name itself, then as the
optional argument of \1ngxlogo and then in the PDF-string.

756 \cs_new:cpn { lngx #1 logo } {

1757 \texorpdfstring {

1758 \1lngxlogo [#1]
1759 } {

1760 LinguisTiX - #1

1761 }

PP

1763 }

65 {/logos)

LiNeuisTiX- NFSS Documentation | IATEX 3-interface

=65 (*nfss)

72

\c_lngx_default_rmdefault_tl
\c_lngx_default_sfdefault_tl
\c_lngx_default_ttdefault_tl

\1_lngx_current_encoding_tl
\1_lngx_current_nmeta_family_tl
\1_1ngx_current_super_family_tl
\1_lngx_current_series_tl
\1_lngx_current_shape_tl

66 \ProvidesExplPackage{linguistix-nfss}

1767 {2026-02-02}

1768 {VO . 8}

1769 {%

1770 An extension to the core NFSS commands
7t from the ‘LinguisTiX’ bundle.}

1772 }

I need a few temporary tls. I declare them here. As noted by the use of __, these are
package-internal t1s. Even though I don’t have any intention to change them, these are
better not touched by the users.

773

w74 \tl_new:N \1__lngx_normalfont_tmp_tl

775 \tl_new:N \1__lngx_selectfont_tmp_tl

776 \tl_new:N \1__lngx_family_tmp_tl

77 \tl_new:N \1__lngx_nfss_tmp_tl

These t1s are required for saving some values that are accessed later by the package as
well as by the users.

1778

770 \tl_new:N \1_lngx_current_encoding_tl

80 \tl_new:N \1_lngx_current_meta_family_tl

e: \tl_new:N \1_lngx_current_super_family_tl

g2 \tl_new:N \1_lngx_current_series_tl

83 \tl_new:N \1_lngx_current_shape_tl

Here, I start the begindocument/end hook. After the document has started, a lot of
initialisation can be assumed to have happened. I set some publicly available t1s here.
1784

785 \hook_gput_code:nnn { begindocument / end } { . } {

786 \tl_const:Ne \c_lngx_default_rmdefault_tl { \rmdefault }

87 \tl_const:Ne \c_lngx_default_sfdefault_tl { \sfdefault }

88 \tl_const:Ne \c_lngx_default_ttdefault_tl { \ttdefault }

(End of definition for \c_lngz_default_rmdefault_tl, \c_lngz_default_sfdefault_tl, and \c_lngz_-
default_ttdefault_tl. These functions are documented on page 22.)

First, I set the value default for the initial super font family.

780 \tl_set:Nn \1_lngx_current_super_family_tl { default }

The current encoding is saved in the relevant t1.

790 \tl_set:Ne \1_lngx_current_encoding_ tl {

1701 \encodingdefault

792}

When the package was first released, there was no public interface for guessing the current
meta family, but from 1tnews42, \@currentmetafamily became available. Thanks Frank
for pointing this out.

1703 \tl_set:Ne \1_lngx_current_meta_family_tl {
1794 \@currentmetafamily % new from ltnews42, thanks Frank!
1795 }

Here, the series and shape tls are set to their defaults.

706 \tl_set:Nn \1_lngx_current_series_tl { md }
707 \tl_set:Nn \1_lngx_current_shape_tl { up }
708 F

73

(End of definition for \1_lngz_current_encoding_tl and others. These functions are documented on page
22.)

The \selectfont command overrides the encoding. I trick the command by saving the
encoding that was active before \selectfont in a temporary t1.

1799

500 \hook_gput_code:nnn { cmd / selectfont / before } { . } {

or \tl_set:Ne \1__lngx_selectfont_tmp_tl { \f@encoding }

1802 }

After the processing of \selectfont, I equate the temporary t1 with the one that the
package is tracking. This way, the effect of \selectfont remains unchanged, but we still
save the values that were there before using it. Only encoding needs this special setting.
Other attributes aren’t reset by \selectfont.

1803

804 \hook_gput_code:nnn { cmd / selectfont / after } { . } {
o5 \tl_set_eq:NN \1_lngx_current_encoding_tl

1806 \1__lngx_selectfont_tmp_tl
o7 \tl_clear:N \1__lngx_selectfont_tmp_tl
1808 }

Now, after each \XXfamily commands, I save the family name in the respective t1 for
accessing later. All of these commands too reset the encoding. I repeat my trick for them
too.

1809

0 \hook_gput_code:nnn { cmd / rmfamily / before } { . } {
s \tl_set:Nn \1_lngx_current_meta_family_tl { rm }

2 \tl_set:Ne \1__lngx_family_tmp_tl { \f@encoding }

813 }

555 \hook_gput_code:nnn { cmd / rmfamily / after } { . } {
6 \tl_set:Nn \1_lngx_current_meta_family_tl { rm }
7 \tl_set_eq:NN \1_lngx_current_encoding_tl

1818 \1__lngx_family_tmp_tl
9 \tl_clear:N \1__lngx_family_tmp_tl
820 F

522 \hook_gput_code:nnn { cmd / sffamily / before } { . } {
23 \tl_set:Nn \1_lngx_current_meta_family_tl { sf }

524 \tl_set:Ne \1__lngx_ family_tmp_tl { \f@encoding }

}

52, \hook_gput_code:nnn { cmd / sffamily / after } { . } {
25 \tl_set:Nn \1_lngx_current_meta_family_tl { sf }
20 \tl_set_eq:NN \1_lngx_current_encoding_tl

1830 \1__lngx_family_tmp_tl
3 \tl_clear:N \1__lngx_family_tmp_tl
832 F

1335 \hook_gput_code:nnn { cmd / ttfamily / before } { . } {
1835 \tl_set:Nn \1_lngx_current_meta_family_tl { tt }

336 \tl_set:Ne \1__lngx_family_tmp_tl { \f@encoding }

1837 }

330 \hook_gput_code:nnn { cmd / ttfamily / after } { . } {

74

20 \tl_set:Nn \1_lngx_current_meta_family_tl { tt }
2 \tl_set_eq:NN \1_lngx_current_encoding_tl

1842 \1__lngx_family_tmp_tl
843 \tl_clear:N \1__lngx_family_tmp_tl
1844 }

After the series commands, I save the series name in the t1. Note that, I don’t use the
traditional E'TEX labels m, bx etc. Using, md and bx is more intuitive, plus they also can
be used in the argument of \use:c directly.

1845

5,6 \hook_gput_code:nnn { cmd / mdseries / after } { . } {
7 \tl_set:Nn \1_lngx_current_series_tl { md }

1848 }

1849

350 \hook_gput_code:nnn { cmd / bfseries / after } { . } {
5r \tl_set:Nn \1_lngx_current_series_tl { bf }

852

For shape related commands too, I save the names that are more closer to their respective
commands.

1853

352 \hook_gput_code:nnn { cmd / upshape / after } { . } {

55 \tl_set:Nn \1_lngx_current_shape_tl { up }
1856 }

58 \hook_gput_code:nnn { cmd / itshape / after } { . } {
50 \tl_set:Nn \1_lngx_current_shape_tl { it }

1860 }

1861

262 \hook_gput_code:nnn { cmd / scshape / after } { . } {
65 \tl_set:Nn \1_lngx_current_shape_tl { sc }

1864 F

1865

566 \hook_gput_code:nnn { cmd / sscshape / after } { . } {
6, \tl_set:Nn \1_lngx_current_shape_tl { ssc }

1868 F

1869

570 \hook_gput_code:nnn { cmd / slshape / after } { . } {
7z \tl_set:Nn \1_lngx_current_shape_tl { sl }

1872 }

1873

572 \hook_gput_code:nnn { cmd / swshape / after } { . } {
w75 \tl_set:Nn \1_lngx_current_shape_tl { sw }

1876 F

1877

576 \hook_gput_code:nnn { cmd / ulcshape / after } { . } {
79 \tl_set:Nn \1_lngx_current_shape_tl { ulc }

1880 }

\lngx_if_encoding p:n I provide a conditional for checking the current encoding with the given argument.
\1lngx_if_encoding:nTF .

852 \prg_new_conditional:Nnn \lngx_if_encoding:n {

1883 P,

1884 T,

75

1885 F,

1886 TF

a7+ {

sss \tl_if_eq:NnTF \1_lngx_current_encoding_tl { #1 } {
1889 \prg_return_true:

w0 F o

1801 \prg_return_false:

1892 }

1893 }

(End of definition for \lngz_if_encoding:nTF. This function is documented on page 22.)

\IfEncodingTF For non-E‘TEX3 contexts, these simpler alternatives are provided.
\IfEncodingT .
\IfEncodingF ., \cs_new_eq:NN \IfEncodingTF \lngx_if_encoding:nTF

1897 \cs_new_eq:NN \IfEncodingT \lngx_if_encoding:nT

05 \Ccs_new_eq:NN \IfEncodingF \lngx_if_encoding:nF

(End of definition for \IfEncodingTF, \IfEncodingT, and \IfEncodingF. These functions are documented
on page 18.)

\lngx_if_meta_family_p:n A conditional for checking the meta family with the given argument.
\lngx_if_meta_family:nTF

1899

00 \prg_new_conditional:Nnn \lngx_if_meta_family:n {
wor P,

1902 T,

1903 F,

1904 TF

05 +

06 \tl_if_eq:NnTF \1_lngx_current_meta_family_tl { #1 } {
1907 \prg_return_true:

1908 } {

1909 \prg_return_false:

o0}

om }

(End of definition for \ingz_if_meta_family:nTF. This function is documented on page 22.)

\IfMetaFamilyTF User-facing conditionals for meta family.

\IfMetaFamilyT .

\IfMetaFamilyF .., \cs_new_eq:NN \IfMetaFamilyTF \lngx_if_meta_family:nTF
oz \cs_new_eq:NN \IfMetaFamilyT \lngx_if_meta_family:nT
o5 \cs_new_eq:NN \IfMetaFamilyF \lngx_if_meta_family:nF

(End of definition for \IfMetaFamilyTF, \IfMetaFamilyT, and \IfMetaFamilyF. These functions are docu-
mented on page 18.)

\lngx_if_super_family_p:n A conditional for checking the super family with the given argument.
\1lngx_if_super_family:nTF

1916
197 \prg_new_conditional:Nnn \lngx_if_super_family:n {

1918 P
1919 T,
o F,
1921 TF

76

22} {
1023 \tl_if_eq:NnTF \1_lngx_current_super_family_tl { #1 } {

1024 \prg_return_true:
w25+ o

1926 \prg_return_false:
1027}

1928 }

(End of definition for \lngz_if_super_family:nTF. This function is documented on page 22.)

\IfSuperFamilyTF User-facing conditionals for super family.
\IfSuperFamilyT

1929

\IfSuperFamilyF ., \cs_new_eq:NN \IfSuperFamilyTF \lngx_if_super_family:nTF
103 \cs_new_eq:NN \IfSuperFamilyT \lngx_if_super_family:nT
932 \cs_new_eq:NN \IfSuperFamilyF \lngx_if_super_family:nF

(End of definition for \IfSuperFamilyTF, \IfSuperFamilyT, and \IfSuperFamilyF. These functions are
documented on page I8.)

\lngx_if_series_p:n A conditional for checking the current series with the given argument.
\lngx_if_series:nTF .

1934 \prg_new_conditional:Nnn \lngx_if_series:n {

1935 P,

1936 T,

1937 F)

1938 TF

1939 } {

s0 \tl_if_eq:NnTF \1_lngx_current_series_tl { #1 } {
1041 \prg_return_true:
a2 b o

1943 \prg_return_false:
1944 }

1045 }

(End of definition for \lngz_if_series:nTF. This function is documented on page 22.)

\IfSeriesTF Its user-side macros.
\IfSeriesT

1946

\IfSeriesF ., \cs_new_eq:NN \IfSeriesTF \lngx_if_series:nTF
148 \cs_new_eq:NN \IfSeriesT \lngx_if_series:nT

1000 \Cs_new_eq:NN \IfSeriesF \lngx_if_series:nF

(End of definition for \IfSeriesTF, \IfSeriesT, and \IfSeriesF. These functions are documented on page
18.)

\lngx_if_shape_p:n A conditional for checking the current shape with the current argument.
\1lngx_if_shape:nTF

1950
105 \prg_new_conditional:Nnn \lngx_if_shape:n {

1952 P,

1953 TJ

1954 F!

1055 TF

1956 } {

w057 \tl_if_eq:NnTF \1_lngx_current_shape_tl { #1 } {
1058 \prg_return_true:

77

\IfShapeTF
\IfShapeT
\IfShapeF

\lngx_if _meta_family_rm_p:
\lngx_if_meta_family_rm:TF
\1ngx_if _meta_family_sf_p:
\1ngx_if_meta_family_sf:TF
\1lngx_if_meta_family_tt_p:
\1lngx_if _meta_family_tt:TF

\1lngx_if_series_md_p:
\1lngx_if_series_md:TF
\lngx_if_series_bf_p:
\lngx_if_series_bf:TIF

1959 } {

1960 \prg_return_false:
w6r F

1962 }

(End of definition for \lngz_if_shape:nTF. This function is documented on page 22.)

User-side macros for the same.

1963

1064 \cs_new_eq:NN \IfShapeTF \lngx_if_shape:nTF
1065 \cs_new_eq:NN \IfShapeT \lngx_if_shape:nT
066 \cs_new_eq:NN \IfShapeF \lngx_if_shape:nF

(End of definition for \IfShapeTF, \IfShapeT, and \IfShapeF. These functions are documented on page 18.)
Now I will use the \clist_map_inline:nn technique for generating multiple condi-

tionals of the same pattern. For that, I need a cnn variant of \prg_new_conditional:Nnn

that I create with the following.

1967

065 \CS_generate_variant:Nn \prg_new_conditional:Nnn { cnn }

These are separate conditionals for rm, sf and tt families. They don’t require arguments.
No user side commands are provided for these.

1969

1970 \clist_map_inline:nn {

qgr T,

1972 sf,

w73 Tt

w07 + o

1075 \prg_new_conditional:cnn { lngx_if_meta_family_ #1 : } {
1076 p, T, F, TF

wrr o b o{

1978 \tl_if_eq:NnTF \1_lngx_current_meta_family_tl { #1 } {
1079 \prg_return_true:

1980 } {

1981 \prg_return_false:

1082 }

1983 }

1984 }

(End of definition for \lngz_if meta_family_rm:TF, \lngz_if_meta_family_sf:TF, and \lngz_if_meta_-
family_tt:TF. These functions are documented on page 22.)
Separate conditionals for both the series.

1985

086 \clist_map_inline:nn {

1987 md,

1988 bf

1989 } {

100 \prg_new_conditional:cnn { lngx_if_series_ #1 : } {
w00r p, T, F, TF

w2+ o

1993 \tl_if_eq:NnTF \1_lngx_current_series_tl { #1 } {
1004 \prg_return_true:

1995 P {

78

1996 \prg_return_false:
1997 }

1998 }

1999 }

(End of definition for \lngz_if_series_md:TF and \lngz_if_series_bf:TF. These functions are documented
on page 23.)

\lngx_if_shape_up_p: Separate conditionals for all the shapes.

\lngx_if_shape_up:TF .
\lngx_if_shape_it_p: ... \clist_map_inline:nn {
\lngx_if_shape_it:TF -0 up,
\1lngx_if_shape_sc_p: =003 1it,
\1lngx_if_shape_sc:TF =04 SC,

\lngx_if_shape_ssc_p: =% SSC,

\lngx_if_shape_ssc:TF *°° sl,
\1lngx_if_shape_sl_p: ' SWs
\1ngx_if_shape_sl:TF iz::) "L{llc
tingX_i_S;lape_SW_I;; zoro \prg_new_conditional:cnn { Ilngx_if_shape_ #1 : } {
ngx_if_shape_sw:TF , T, F, TF
\lngx_if_shape_ulc_p: .. } I.E
\1lngx_if_shape_ulc:TF .., \tl_if_eq:NnTF \1_lngx_current_shape_tl { #1 } {
2014 \prg_return_true:
2015 A
2016 \prg_return_false:
2017 }
208}
2019 }

(End of definition for \lngz_if_shape_up:TF and others. These functions are documented on page 23.)

These keys are used in the argument of \1ngx_super_font_family:nn. This is why
they are separated from the set lngx_keys. We create new tls using these keys that
save the rm, sf and tt defaults of the new super font family. \1__lngx_nfss_tmp_t1 is
defined by the command that creates the super font family.

202: \clist_map_inline:nn {

2022 T,

2023 sf,

2024 tt

2025

2026 \keys_define:nn { lngx_nfss } {

2027 #1

2028 .code:n =S

2029 \tl_gclear_new:c {

2030 g_lngx_ \1__lngx_nfss_tmp_tl _ #1 default _tl
2031 }

2032 \tl_gset:cn {

2033 g_lngx_ \1__lngx_nfss_tmp_tl _ #1 default _tl
2034 }{ ##1}

2035 }

2036 F

2037 }

79

\1ngx_super_font_family:nn
\superfontfamily

\Ingx_soft_super_font_family:nn
\softsuperfontfamily

I first set the temporary t1 with the name of the super font family retrieved from the
first argument.

2038

2030 \cs_new_protected:Npn \lngx_super_font_family:nn #1#2 {

2020 \tl_set:Ne \1__lngx _nfss_tmp_tl { #1 }

Now, I pass the second argument to the key-set I just defined. The temporary tl is
cleared. This function comes with a user-side macro.

sosr \keys_set:nn { lngx_nfss } { #2 }

2022 \tl_clear:N \1__lngx_nfss_tmp_tl

2003 }

2044

2005 \CS_gset_eq:NN \superfontfamily

2046 \1lngx_super_font_family:nn

(End of definition for \lngz_super_font_family:nn and \superfontfamily. These functions are documented
on page 23.)

I set the t1 that saves the current font family to the first argument.

2047

2058 \CS_new_protected:Npn \lngx_soft_super_font_family:nn #1#2 {

2020 \tl_set:Ne \1_lngx_current_super_family_tl { #1 }

I first check if the t1s for rm, sf and tt are empty or not. Only if they are not, I use their
content in the respective \XXdefault. This makes the use of all the keys optional. Only
the keys that the user has used are processed here.

2050 \clist_map_inline:nn {

2051 rm,

2052 sf,

2053 tt

2054+ {

2055 \tl_if_empty:cF { g_lngx_ #1 _ ##1 default_tl } {
2056 \cs_set:cpe { ##1 default } {

2057 \tl_use:c { g_lngx_ #1 _ ##1 default _tl }
2058 }

2059 }

2060}

After setting the \XXdefault, I use the \normalfont to initialise the super font family.
206r \normalfont

Now all the aspects are reset. But, we have them saved in our t1ls. So now depending on
the attributes that the user wants to retrieve, I call those attributes again. The second
argument is (expected to be) a comma-separated list of all such attributes. Thus, we
change the super font family, but retain the already active attributes. This command has
a user-facing macro.

2062 \clist_map_inline:nn { #2 } {

2063 \str_case:nn { ##1 } {

2064 { encoding } {

2065 \exp_args:NV \fontencoding

2066 \1_lngx_current_encoding_tl
2067 }

2068 { family } {

2069 \use:c {

2070 \1_lngx_current_meta_family_tl family

80

2071 }

2072 \exp_args:NV \fontencoding

2073 \1_lngx_current_encoding_tl
2074 \selectfont

2075 }

2076 { series } {

2077 \use:c {

2078 \1_lngx_current_series_tl series
2079 ¥

2080 }

2081 { shape } {

2082 \use:c {

2083 \1_lngx_current_shape_tl shape
2084 }

2085 }

2086 }

2087}

2088 }

2089
2000 \cS_gset_eq:NN \softsuperfontfamily
2001 \1lngx_soft_super_font_family:nn

(End of definition for \lngz_soft_super_font_family:nn and \softsuperfontfamily. These functions are
documented on page 23.)

\Ingx_softer_super_font_family:n This function excludes the encoding and resets all the other attributes. It comes with a
\softersuperfontfamily user-side macro.
2092
2005 \CS_new_protected:Npn \lngx_softer_super_font_family:n #1 {
2004 \lngx_soft_super_font_family:nn { #1 } {

2095 family,
2096 series,
2097 shape
2008 }

2099 }

20r \cs_gset_eq:NN \softersuperfontfamily
2102 \1lngx_softer_super_font_family:n

(End of definition for \lngz_softer_super_font_family:n and \softersuperfontfamily. These functions
are documented on page 23.)

\Ingx_softest_super_font_family:n This function resets all the attributes. It is available as a user-side macro.
\softestsuperfontfamily .

20 \CS_new_protected:Npn \lngx_softest_super_font_family:n #1 {
205 \lngx_soft_super_font_family:nn { #1 } {

2106 encoding,
210 famil

7 y:
2108 series,
2109 shape
2110 }
2

a3 \cs_gset_eq:NN \softestsuperfontfamily
2114 \1ngx_softest_super_font_family:n

81

\1lngx_soft_normal_font:n
\softnormalfont

\1lngx_softer_normal_font:
\softernormalfont

(End of definition for \lngz_softest_super_font_family:n and \softestsuperfontfamily. These functions
are documented on page 23.)

Following the same logic, I now provide the command for resetting to the default super
family, but retaining the active attributes. I provide a user-side macro for this.

2115
2116
2117

2118

2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150

2151

2155

2156

\cs_new_

protected:Npn \lngx_soft_normal_font:n #1 {

\tl_set:Ne \1_lngx_current_super_family_tl { default }
\clist_map_inline:nn {

rm,
sf,
tt

o

\cs_

set:cpe { ##1 default } {

\tl_use:c { c_lngx_default_ ##1 default _tl }

}
}

\normalfont
\clist_map_inline:nn { #1 } {
\str_case:nn { ##1 } {

{

[u}

-~

}

encoding } {
\exp_args:NV \fontencoding
\1_lngx_current_encoding_tl

family } {
\use:c {
\1_lngx_current_meta_family_tl family
}
\exp_args:NV \fontencoding
\1_lngx_current_encoding_tl
\selectfont

series } {
\use:c {
\1_lngx_current_series_tl series

}

shape } {

\use:c {
\1_lngx_current_shape_tl shape

}

\cs_gset_eq:NN \softnormalfont \lngx_soft_normal_font:n

(End of definition for \lngz_soft_normal_font:n and \softnormalfont. These functions are documented
on page 23.)

This is a parallel to the ‘softer’ super family command for the default super family.

2157

258 \csS_new_protected:Npn \lngx_softer_normal_font: {

82

\1lngx_softest_normal_font:
\softestnormalfont

\CurrentEncoding
\CurrentMetaFamily
\CurrentSeries
\CurrentShape

250 \1ngx_soft_normal_font:n {

2160 family,
2161 series,
2162 shape
2163 }

264 }

2165
266 \cs_gset_eq:NN \softernormalfont \lngx_softer_normal_font:

(End of definition for \lngz_softer_normal_font: and \softernormalfont. These functions are documented
on page 23.)

This is a parallel to the ‘softest’ super family command for the default super family.
2167

268 \cS_new_protected:Npn \lngx_softest_normal_font: {

269 \1ngx_soft_normal_font:n {

2170 encoding,
2171 family,
2172 series,
2173 shape

2174 }

2175 }

277 \cs_gset_eq:NN \softestnormalfont \lngx_softest_normal_font:

(End of definition for \ingz_softest_normal_font: and \softestnormalfont. These functions are docu-
mented on page 23.)

Lastly, we create the commands that print the current values of the font attributes and
end the package.

278 \cs_new:Npn \CurrentEncoding {

2179 \tl_use:N \1_lngx_current_encoding_tl
2180 F

2 \cs_new:Npn \CurrentMetaFamily {

2182 \tl_use:N \1_lngx_current_meta_family_tl
2183 }

254 \cs_new:Npn \CurrentSuperFamily {

2185 \tl_use:N \1_lngx_current_super_family_tl
2186 F

23, \cs_new:Npn \CurrentSeries {

28 \tl_use:N \1_lngx_current_series_tl

2189 }

200 \CS_new:Npn \CurrentShape {

290 \tl_use:N \1_lngx_current_shape_tl

2192 F

2105 (/nfss)

(End of definition for \CurrentEncoding and others. These functions are documented on page 18.)

83

References

Bringhurst, Robert (2004). The elements of typographic style. 4th ed. Point Roberts, WA:
Hartley & Marks, Publishers.

Munn, Alan and Enrico Gregorio (5th Dec. 2023). ExPex fails with unicode-math. How
to avoid the clash? URL: https://tex.stackexchange.com/q/703094 (visited on

21/12/2025).

84

https://tex.stackexchange.com/q/703094

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
A 62, 63, 64, 1633
A
NAdABO . .o 21
NAIDD .« o 1624
NALDR .o 1620
\arabic ... 66, 67, 1546, 1602
\AssignTaggingSocketPlugo, 576
B
\babelfont 1504, 1507, 1510, 1514, 1517, 1520, 1525, 1529, 1533
\babelprovide 1496
\begin . .. 896, 1022
bool commands:
\bool_gset_false:N 910
\bool if:NTF 435, 437, 444, 446, 776, 810, 858, 945, 1027
\bool_mew:N e 487
\bool_set_true:N 760
bourbaki's empty set 7, 136
C
NCLeaders . . .ot i it 877
clist commands:
\clist_gset:Nn 1641
\clist_if_empty:NTF 1643, 1661
\clist_map_inline:Nn 1662

\clist_map_inline:nn . 155, 2II, 215, 267, 399, 1137, 1192, 1196, 1248, 1442,
1751, 1970, 1986, 2001, 2021, 2050, 2062, 2118, 2128

Nclist_new:N 1493
\clist_pop:NN 1644, 1663
\clist_set_eq:NN e 1642
\1_tmpa_clist 1642, 1643, 1644, 1661, 1662, 1663
color commands:
\color_group_begin:ttt 1731
\color_group_end:ttt 1734
\color_seleCt:inttt 1732
NCOLOT_SELIMI . ..t ittt it 1725
COLUMNS . . .ot 10, 608

cs commands:
\cs_generate_variant:Nn 393, 394, 395, 396, 397, 1426, 1427, 1428, 1499,
1536, 1537, 1538, 1605, 1968
\cs_gset_eq:NN . 48, 83, 84, 750, 1440, 1500, 1544, 1546, 1589, 1602, 1629,
2045, 2090, 2101, 2113, 2156, 2166, 2177
\cs_gset_protected:Npn 1503, 1506, 1509, 1524, 1528, 1532, 1596

\cs_if_exist:NTF 715
\cs_new:Npn 1739, I756, 2178, 2181, 2184, 2187, 2190
\cs_new_eq:NN .. 1896, 1897, 1898, 1913, 1914, 1915, 1930, I931, 1932, 1947,
1948, 1949, 1964, 1965, 1966

\cs_new_protected:Npn 45, 44, 368, 371, 374, 379, 383, 404, 415, 423, 666,
679, 847, 909, 1405, 1412, 1419, 1436, 1447, 1495, 1513, 1516, 1519, 1540, 1619,
2039, 2048, 2093, 2104, 2116, 2158, 2168

\cs_set:Npe 2056, 2123
\cs_set:Npn 520, 1548, 1551, 1554, 1557, 1560, 1563, 1566, 1569, 1572, 1575,
1578, 1581, 1620, 1621, 1622, 1623, 1624, 1625

Nes_set_eq:NN 525

\cs_undefine:N 753
\CurrentEncoding 18, 2178
\CurrentMetaFamily 18, 2178
\CurrentSeries 18, 2178
\CurrentShapet 18, 2178
\CurrentSuperFamilyt 18, 2184

D

\DeclareMathVersion 385
dim commands:

\dim_zero_new:N 491, 492, 493, 494
\DocumentMetadatattt 44
E
NI . o 887
Nemph . .. 1629
\encodingdefault 1791
Nend ..o 905, 1070
entryseparator 10, 639
exp commands: T

\exp_args:Ne 70, 538, 552, 690, 713, 772, 808, 1652, 1669

\exp_args:Neet 44, 683

\exp_args:NV 2065, 2072, 2131, 2138

Nexp mot:N 721, 732, 1025, 1028

\exp_not:n 554, 692, 997, 1004, 1011, 1046, 1053, 1060
@XPANSION 9, 656
exXpansion Case e 9, 592

F
file commands:

\file_if_exist:nTFt 1651, 1666
\finalhyphendemerits, 856
\fontencoding, 2065, 2072, 2131, 2138
format 9, 577

G
\GetDocumentPropertiest 647
NBLa o 83, 84
BLOSS . 9, 650

\gLOSSATYNAME ottt et e e 51, 1021, 1028

NELX o e 8, 10, 756
NELR* 8, 10

group commands:
\group_begin: . 169, 183, 229, 243, 549, 667, 689, 718, 758, 805, 852, 911,
926, 984, 1033, 1076, 1151, 1165, 1210, 1224, 1728
\group_end: 179, 195, 239, 255, 567, 707, 738, 747, 841, 844, 889, 1016, 1019,
1068, 1072, 1083, 1161, 1177, 1220, 1236, 1736

NBDOX .« o 132, 878
hook commands:
\hook_gput_code:nnn . 68, 82, 431, 1458, 1785, 1800, 1804, 1810, 1815, 1822,
1827, 1834, 1839, 1846, 1850, 1854, 1858, 1862, 1866, 1870, 1874, 1878

NRSKID o« v 879
A = 878
\Ryperlinko 565, 705
\hypersetup 552, 690
I
NIEBLAnKE . . oottt 1735
\IfBooleanTttt 759
\IfBooleanTFt 1121
\IfDocumentMetadataTc.iiiiniinnennennen... 867, 880
\IfDocumentMetadataTF, 682
\IfEncodingF 18, 1895
\IfEncodingT 18, 1895
\IfEncodingTF 18, 1895
\IfMetaFamilyF 18, 1912
\IfMetaFamilyT 18, 1912
\IfMetaFamilyTF 18, 1912

\IfPackageloadedF . 10, 13, 16, 19, 22, 25, 28, 31, 73, 107, II2, 113, 118, 123, 367
483, 1097, 1098, 1103, 1108, 1112, 1116, 1483, 1487, 1692

\IfPackageLoadedT, 384, 467, 1626
\IfPackageloadedTF 69, 71, 548, 688, 1502, 1740
\IfPDFManagementActiveT 505, 557, 645, 695
NIfSeriesF 18, 1946
NIfSeriesT . . . oot 18,;528
NIESETIOSTE o oo v oo e e e e e e 18, 1946
NIESRAPEF . . o o oo oottt e e e e e 18, 1963
A\IfShapeTt 18,;565
NIESRAPETE . . o oo oo ettt e e e e e e e e e e e e 18, 1963
\IfSuperFamilyF I8,;§;§
\IfSuperFamilyTottt 18,;555
\IfSuperFamilyTF ittt I8,£§§§
int commands:

\int_compare:nNnTF 893, 902

\int_gincr:N 712

\int_gzero_new:N

\int_use:N
ipa bolditalic
ipa bold italicfeatures
ipa bold, ;slanted
ipa bold ;slanted features
ipa bold, swash
ipa bold, ;swash features
ipag bold jupright
ipa bold jupright features
ipa extra features
ipa;italic
ipajitalic features
ipa main font
ipag mono bold,italic

ipag mono bold, italic features

ipa mono bold slanted

ipa,mono, bold, ;slanted, features

ipa,mono bold swash
ipa,mono bold swash features
ipag mono bold upright

ipagmono bold jupright features

ipa, mono extra features
ipa; mono, ,font

ipa monoyitalic
ipa monoyitalicfeatures
ipa monoyslanted
ipa mono;;slanted features
ipa,mono;;small caps
ipa monoy;small caps, features
ipa monoyswash
ipa monoyswash features
ipa mono upright
ipa mono upright features
ipa newcm
ipa newcm_mono
ipa newcm regular
ipa newcm regular, mono
ipa newcm regular ;sans
ipa newcm sans
ipa;;sans bold,italic

ipa;;sans bold italic features

ipa ;sans bold slanted

ipa,;sans;bold slanted, features

ipa;sans bold swash
ipa ;sans bold swash features
ipagsans bold jupright

88

12,

495

714, 716, 723, 734, 894, 897, 903

1133
133
133
133
133
133
133
1133
1181
1133
33
1247
1186
1186
1136
1186
1186
186
1186
186

ipa;;sans bold upright features 12, 1186

ipa;sansgextra featureso I3
ipagsansfont 12, 1247
ipagsansgitalic ... 12, 1186
ipa;sansjitalicfeatureso 12, 1186
ipagsans;slanted 12, 1186
ipa;sansslanted features L. 12, 1186
ipasans; SmalljCapst i i 12, 1186
ipasans;small caps features 12, 1186
ipagsans; swash 12, 1186
ipa;;sans;swash features o o oL 12, 1186
ipagsansupright 12, 1186
ipagsans upright features L. 12, 1186
ipagslanted Iz, 1133
ipagslanted features o o o I2, 1133
ipagsmallicaps I2, 1133
ipagsmall caps features i, I2, 1133
ipagswash I2, 1133
ipaswash features Iz, 1133
ipajupright I, 1133
ipajupright features o o L. 1, 1133
NIpatext . ..o 11, 1119
Nipatext* 11, 1119
K

NKETIL .ot 130, 131, 132, 133, 886
keys commands:

\1_keys_choice_str 588, 597, 604, 1611

\keys_define:nn 137, 166, 200, 226, 259, 272, 284, 295, 306, 317, 328, 339

350, 578, 651, 1148, 1182, 1207, 1240, 1253, 1259, 1283, 1307, 1331, 1355, 1379,
1607, 1638, 2026

\keys_set:nn 45, 663, 762, 766, 927, 1078, 1081, 2041
L

NLabel .o 44, 714
\labelenumii 1621
\labelenumiii e 1623
\labelenumiv 1625
1anguages 15,1637
NLaTeX o ot ot 5,126
\leavevmodet 865
NLEFESKID - v v v vttt 855
ANLIDESEL .« .ottt 1627
\linguistixo 5, 19, 47
1ink ;COLOoT 9, 581
A1iStOfgloSSeS . ..ottt 8, 10, 20, 1074
Ingx commands: o

\g_lngx_bourbaki bool 20, 136

\lngx_build_main_ipa_font_features: 1459
\lngx_build_mono_ipa_font_features: 1467
\lngx_build_sans_ipa_font_features: 1463
\lngx_counter:n 15, 21, 66, 67, 1545, 1546, 1549, 1552, 1555, 1558, 1561, 1564,
1567, 1570, 1573, 1576, 1579, 1582, 1589, 1596, 1602
\1_lngx_current_encoding_tl 22, 1779, 1789, 1805, 1817, 1829, 1841, 1888,
2066, 2073, 2132, 2139, 2179 o
\1_lngx_current_meta_family_tl .. 22, 1780, 1789, 1811, 1816, 1823, 1828,
1835, 1840, 1906, 1978, 2070, 2136, 2182 o
\1_lngx_current_series_tl . 22, 1782, 1789, 1847, 1851, 1940, 1993, 2078,
2144, 2188 o

\1_lngx_current_shape_tl .. 22, 1783, 1789, 1855, 1859, 1863, 1867, 1871,
1875, 1879, 1957, 2013, 2083, 2149, 219T
\1_lngx_current_super_family_tl 22, 1781, 1789, 1923, 2049, 2117, 2185

\c_lngx_default_rmdefault_tl 22, 1784
\c_lngx_default_sfdefault_tl 22,555;
\c_lngx_default_ttdefault_tl 22, 1784
\1_lngx_expansion_bool 487, 760, 776, 810

\1lngx_expansion_format:n . 20, 656, 657, 955, 964, 973, 995, 1002, 1009,
1044, 1051, 1058

\1_lngx_expansion_separator_tl 489, 813, 821, 829
\1lngx_gloss_format:n .. 20, 564, 569, 650, 653, 704, 709, 859, 946, 988
\g_lngx_gloss_link_color_Struuuruuunenon.. 29
\lngx_gloss_list: 20, 908, 909, 1082
\1ngx_gloSS_NeW:INNc.ooouon... 20, 45, 665, 666, 750, 754
\1_1lngx_gloss_separator_tl 488, 838
\1_lngx_glossary_separator_tl 490, 862, 948, 990
\1_lngx_gls_language_sStro.o.... 496, 646
\1_1lngx_i_hack_dimt 494
\l_Ingx_i have_dimt 491
\1l_Ingx_i meed_dimt 492
\lngx_if_encoding:n 1882
\lngx_if_encoding:nTF 22, 1881, 1896, 1897, 1898
\lngx_if_encoding p:mttt 22, 1881
\lngx_if_meta_family:n 1900
\lngx_if_meta_family:nTF 22,£§Q2,1913,1914,1915
\lngx_if_meta_family p:n 22, 1899
\lngx_if_meta_family rm:TF 22, 1969
\lngx_if_meta_family_rm_p: 22, 1969
\lngx_if_meta_family sf:TF 22, 1969
\lngx_if_meta_family_sf _p: 22,£g§2
\lngx_if_meta_family_tt:TF 22, 1969
\lngx_if_meta_family_tt_p: 22, 1969
\lngx_if_series:m ;552
\lngx_if_series:nTF 22,1933, 1947, 1948, 1949
\lngx_if_series_bf:TF e 23, 1985
\lngx_if_series_bf_p: 23,£§§5

90

\lngx_if_series md:TF 29, 1985

\lngx_if_series_md_p: 23, 1985
\lngx_if_series_p:in 22,1933
\lngx_if_shape:nttt 1951
\lngx_if_shape:nTF 22, 1950, 1964, 1965, 1966
\lngx_if_shape_it:TF D 29, 2000
\lngx_if_shape_it_p:t 239, 2000
\lngx_if_shape _p:m 22, 1050
\lngx_if_shape_sc:TF 23, 2000
\lngx_if_shape_sc_p: 23, 2000
\lngx_if_shape_sl:TF 29, 2000
\lngx_if_shape_sl_p: 23, 2000
\lngx_if_shape_ssc:TFt 23, 2000
\lngx_if_shape_SSC_P:t 23, 2000
\lngx_if_shape_sw:TF 23, 2000
\lngx_if_shape_SW_P:ttt 29, 2000
\lngx_if_shape_ulc:TF 23, 2000
\lngx_if_shape_ulc_p:ttt 23, 2000
\lngx_if_shape_up:TF 23, 2000
\lngx_if_shape_up_p:ttt 23, 2000
\lngx_if_super_family:n, 1917
\lngx_if_super_family:nTF 22,£2£§,1930,1931,1932
\lngx_if_super_family p:n 22, 1916
Ingx_ipa 2I,£;§§
\Ingx_ipa: 21, 1435, 1436, 1440
Ingx_ipa_rm_nfss TTTT. 21, 1404
Ingx_ipa_sf nfss 21, 1404
Ingx_dipa_tt_nfss 21, 1404
\lngx_languages:nn 21, 1494, 1495, 1499, 1500, 1650, 1665
\g_lngx_languages_clist e 2I,£é22,1641,1642
\lngx_load_languages:n 21, 1539, 1540, 1544
\lngx_logo_font: 22,1695, 1696, 1729
\Ingx_main_ipa:t 7_2;;£i94,1406
\g_lngx_main_language_tl 21,{199,1590,1645
\lngx_misc_reset:i.iiiiiiii.. 21, 1618, 1619
\IngX_MONO_1Pa:i ..ot it it 21, 1404, 1420
Ingx_multicols 20, 891
\g_lngx_old_style_bool 20, 136, 435, 444
\g_lngx_old_style_one_bool 20, 136, 437, 446
\lngx_other_main_font:nnn 20,5&3&,1524,1536
\1lngx_other_mono_font:nnn 20,{&3&,1532,1538
\lngx_other_sans_font:nnn 20, 1523, 1528, 1537
Ingx_purple_color i 22,1724
\1_lngx_remain_dimttt 493
\lngx_sans_ipa: 21, 1404, 1413
\1_Ingx_separator_tlt 53

9I

\lngx_set_keys:n 19, 43, 44, 48, 361, 432, 1403, 1541

\lngx_set_main_font:nn 20, 366, 368, 393, 453, 1503, 1513
\lngx_set_main_ipa_font:nn 21, 1404, 1405, 1426, 1460
\lngx_set_math_bold_font:nn 383, 397, 469
\lngx_set_math_font:nn 20,§§§,379,396,465
\lngx_set_mono_font:nn 20, 366, 374, 395, 461, 1509, 1519
\lngx_set_mono_ipa_font:nn TTT-21,519é,1419,1428,1468
\lngx_set_sans_font:nn 20, 366, 371, 394, 457, 15006, 1516
\lngx_set_sans_ipa_font:nn T_TT 21, 1404, 1412, 1427, 1464
\lngx_soft_normal_font:n 23,2115,5;;672156,2159,2169
\1ngx_soft_super_font_family:nn 23,261?72048,2091,2094,2105
\lngx_softer_normal_font: e 29, 2157, 2158, 2166
\1lngx_softer_super_font_family:n 23,1437,265g:2093,2102
\1lngx_softest_normal_font: 237%26i,2168,2177
\lngx_softest_super_font_family:n 29, 2103, 2104, 2114
\1lngx_super_font_family:nn 23, 1430, 2038, 2039, 2046
\g_lngx_trigger_aux_file_bool 910
Ingx internal commands:
\g__lngx_bold_math_font_features_tl 398
__lngx_build_bold_math_font_features: 398
__lngx_build_main_font_features: §g§,452
__lngx_build_math_bold_features: 423, 468
__lngx_build_math_features: 415, 464
__lngx_build_math_font_features: §2§
__lngx_build_mono_font_features: §Q§,460
__lngx_build_sans_font_features: 398, 456
__lngx_dotfill:mnn 846, 847, 1038
\1__lngx_entry_separator_tl 639, 850, 888, 985

\1__lngx_family_tmp_t1l 1776, 1812, 1818, 1819, 1824, 1830, 1831, 1836, 1842,
1843

__lngx_gloss_description: 3g,§£§,520,525,542
\g__lngx_gloss_link_color_str 554’§§E’692
\1__lngx_glossary_columns_int 20, 608, 894, 897, 903
\1__lngx_glossary_style_str 499, 601, 925
\1__lngx_glosses_page_number_bool 612
\1__Ingx_gls_bold_booloiiiinnnn... 625, 858, 945
\1__lngx_gls_expansion_case_str ... 498, 592, 777, 81L, 953, 993, 1042
\1__lngx_gls_section_number_bool 621, 1027
\1__lngx_gls_sectioning_str §lZ7102371026
\1__lngx_gls_sorting_order_str 497,§§§,914
\g__lngx_gls_use_order_seq 501, 740, 743, 913
\g__lngx_ipa_main_font_features_tl ££§§,146I
\g__lngx_ipa_main_font_tl 1247, 1462
\g__lngx_ipa_main_fonts_propc.e.o.... EELi’H84
\g__lngx_ipa_mono_font_features_tl 1186, 1469

92

\g__lngx_ipa_mono_font_tl 1247, 1470

\g__lngx_ipa_mono_fonts_prop, 1186
\g__lngx_ipa_sans_font_features_tl 1186, 1465
\g__lngx_ipa_sans_font_tl 1247, 1466
\g__lngx_ipa_sans_fonts_propt 1186
\g__lngx_math_bold_features_tl 277, 425, 470
\g__lngx_math_bold_font_tl 288, 471
\g__lngx_math_bold_fonts_prop 277, 424
\g__lngx_math_features_tl 277, 417, 465
\g__lngx_math_font_features_tl 398
\g__lngx_math_font_tl 286, 466
\g__lngx_math_fonts_propc.oiiniiniinn.. 277, 416
\1__lngx_nfss_tmp_tl 1777, 2030, 2033, 2040, 2042
\1__lngx_normalfont_tmp_tl 1774
\g__lngx_page_ref_int 44, 495, 712, 714, 716, 723, 734
\1__lngx_selectfont_tmp_tl 1775, 1801, 1806, 1807
\1__lngx_separator_str 500, 503, 633, 761, 1077
\1__lngx_separator_tlttt 629
\g__lngx_text_main_font_features_tl 151, 398, 454
\g__lngx_text_main_font_tl 266, 455
\g__lngx_text_main_fonts_prop 151, 202
\g__lngx_text_mono_font_features_tl 39&,398,462
\g__lngx_text_mono_font_tl 266, 463
\g__lngx_text_mono_fontsS_Propouuiuernennon.. 204
\g__lngx_text_sans_font_features_tl 39&,398,458
\g__lngx_text_sans_font_tl 266, 459
\g__1ngx_text_sans_fonts_prop 204
__lngx_tmp_text: 509, 5II
AIRGXIPA - ¢ oo II, 17, 21, 1123, 1128, 1435
AINGXLOZO « . v ot et 16, 1726, 1742, 1747, 1758
AIRGXDKE - - o v e ettt 1739
\10adlanguagest 15, 1539
\localecounter 1597
logical 15, 1593
M
\MakeLinkTargett 942, 986, 1039
\MakeLinkTarget®ttt ettt 49, 52
math ... 6, 277
math bold e 6,311
math, bold features 6,211
math features 6, 277
mode commands: T
\mode_leave_vertical:ttt 536
msg commands:
\msg_info:nnn 87, 92
NS _NEeWIINN . ..ottt ettt e e e e e e e e 59, 1632

93

\ISg_wWarning:nnn 1655, 1672

\multicol 38
N
native numbering 15, 1604
DMEWCIL . vt v vttt e et e e e e e e e 6, 294
NEWCI MOTIO .+« o v v e e e e e e e e e e e e e e e 6, 316
NeWCIM TEGULAT ottt e 6, 327
newcm regular MoMOttt 6, 349
NeWCM TeGULAT SANS . . o o v vttt ittt e e e 6, 338
NEWCIMSAIS .+ o v vt vttt vt e et e 6, 305
\NewCommandCOPY v vttt et it 127
\NewDocumentCommand 662, 752, 757, 1075, 1120, 1727
\NewDocumentEnvironmentcuiiiiininne.. 892
\newfontfamily 1696
\REWELOSS . . . oot 8, 20, 665
\NewTaggingSocket 533
\NewTaggingSocketPlug, 535
nogbold ... 10, 625
\noindent 900
\normalfont 2061, 2127
(0)
off 15, 1600
NOgLATEX . o ot 5, 126
old style numbers 6, 136
oldstyleone 6, 136
P
PAGELNUMDETSt 10, 612
R S o 642
\PArfillsKiD . .ottt 854
\parindent 857
pdfannot commands:

\pdfannot_dict_put:nnn 510
\pdfstringdef 509
prg commands:

\prg_do_nothing: 525, 853, 854, 855, 856, 857, 879, 886

\prg_new_conditional:Nnn 1882, 1900, 1917, 1934, 1951, 1968, 1975, 1990,

2010

\prg_return_false: 1891, 1909, 1926, 1943, 1960, 1981, 1996, 2016

\prg_return_true: 1889, 1907, 1924, 1941, 1958, 1979, 1994, 2014
prop commands:

\prop_gclear_new:N 152, 205, 208, 278, 281, 1134, 1187, 1189

\prop_gput:Nnn 176, 190, 236, 250, 1158, 1172, 1217, 1231

\prop_map_inline:Nn 407, 416, 424, 1450
\ProvideDocumentCommandc.uiuniiniinennenn... 1021
\providelanguagettt 15, 1494
\ProvidesExplPackage 2, 36, 51, 99, 476, 1087, 1474, 1685, 1766

NQUAA . 866, 885
R

NTAISEDOX . . oottt 131, 133

A o = 44

ANFELAX .« .ot 130, 131, 132, 133

\RenewDocumentCommanduiuiiniiniinie.. 129

\FenewgloSS . ..ottt 8, 45, 751

\RequirePackage 1I, 14, 17, 20, 23, 26, 29, 32, 108, 114, II9, 124, 484, 1099, 1104,
1109, 1113, 1117, 1484, 1488, 1652, 1669, 1693

\TightsKip oo 853
\rmdefault 1786
NTOMAN .« . vttt et e e e e 1622
S
\SECTION . . .o 41
section number 10, 621
sectioning 10, 617
\selectfont 2074, 2140
SEPATALOT 10, 629
seq commands: o
\seq_clear:N i 768, 912, 1034
\seq_gclear_mew:N 501, 673
\seq_gput_right:Nn 729, 743
\seq_if_empty:NTF i 803, 982
\seq_if_in:NnTF 726, 740
\seq_map_inline:Nn 804, 983, 1032, 1035
\seq_pop_left:NN 770, 933
\seq_put_right:Nn 1036
\seq_remove_duplicates:N 44
\seq_set_eq:NN 913
\seq_set_from_clist:Nn 769
\Seq_Sort:NIL 916
\seg_use:Nn 1066
\1_tmpa_seq .. 768, 769, 770, 803, 804, 912, 913, 916, 933, 982, 983, 1032
\L_tmpb_Seqot 1034, 1036, 1066
\setfontfamily 1406, 1413, 1420
\setmainfont 369
\setmathfont 380, 387
\Setmonofont 375
\setsansfont 372
\setupglossing 9, 661
Asfdefault 1787
ASMALLSKIP . .ottt 851
socket commands:
\socket_assign_plug:nn 528, 559, 699, 1605, 1610
\socket_if_exist:nTF 506, 558, 696
\SOCKEt_NMEW:INIt i ittt ittt e e 517, 1585
\socket_new_plug:nnn 507, 519, 523, 1587, 1594, 1601

\socket_USE:IN 531, 1613

\softernormalfont 19, 2157
\softersuperfontfamily 19, 2092
\softestnormalfont 19, 2167
\softestsuperfontfamilyttt 19, 2103
\softnormalfont 19, 2115
\softsuperfontfamily00ttt 19, 2047
SOTE . o 9, 585
sort commands: o
\SOrt_return_Same: ui vttt 920
\sort_return_swapped: 918
str commands:
\C_COlon_StErt 928, 1079
\str_case:nn 777, 811, 914, 953, 993, 1042, 2063, 2129
\str_clear:N 170, 184, 230, 244, 550, 668, 806, 932, 1152, 1166, 1211, 122§
\str_clear_new:N 496, 497, 498, 499, 500
\str_compare:nNnTF, 917
\str_if_eq:nnTF 925, 1023
\Str_lowercCase:Douuuuernennon. 43, 669, 772, 808
\str_replace_all:Non 175, 189, 235, 249, 1157, II71, 1216, 1230

\str_set:Nn 171, 185, 231, 245, 503, 55I, 646, 669, 761, 771, 807, 934, 1077,
1153, 1167, 1212, 1226

\str_set_eq:NN 587, 596, 603
\str_use:N . 178,193, 253, 633, 671, 674, 677, 680, 685, 727, 730, 741, 744,
781, 788, 795, 801, 816, 824, 832, 839, 943, 958, 967, 976, 1026, 1160, 1175,
1234, 1611

\1_tmpa_str . 170, I7I, I75, 178, 184, 185, 189, 193, 230, 231, 235, 244, 245,
249, 253, 550, 551, 668, 669, 671, 674, 677, 680, 685, 727, 730, 741, 744, 771,

781, 788, 795, 801, 806, 807, 816, 824, 832, 839, 932, 934, 943, 958, 967, 976,
1152, 1153, 1157, 1160, 1166, 1167, 1171, 1175, 1211, 1212, 1216, 1225, 1226, 1230,

1234
Strict ... 15, 1586
StYLe .. 9, 601
\superfontfamily 18, 2038
sys commands: o
\sys_if_engine_luatex:TF 72, III, 1096
T
tag commands:
\tag_mc_begin:n 545, 573, 873, 883, 939
\tag_mc_end: 537, 571, 868, 881, 935, 951
\tag_struct_begin:n 539, 869, 936
\tag_struct_end: 572, 882, 952
TEX and BTEX 2. commands:
\@currentmetafamilyt 1794
\f@encoding 1801, 1812, 1824, 1836
NELWOELA . o ot 84
\texorpdfstring 1741, 1757
text bold italic 12, I5I

text bold italicfeatures e 12, 151

text bold slanted e IQ,IQI
text bold_ slanted features 12,;5;
textyboldswash 12,;3;
text bold_ swash features e 12,;3;
textyboldupright Lnig;
textybold upright features II,EE
text commands:

\text_lowercase:n 779, 814, 956, 996, 1045

\text_titlecase_all:n 172, 186, 232, 246, 786, 822, 965, 1003, 1052, II54,
1168, 1213, 1227

\text_titlecase_first:n 793, 830, 974, 1010, 1059
text extra features e 13, 199
textyuitalic 12, 151
textyitalic features e Iz,Ig;
textymain font e II,éEE
text mono_ bold italic e Iz, 204
text_mono bold italic features 12, 204
text mono bold slanted e I2,;62
text_mono bold ;slanted features 13,;61
text mono_bold swash e 13,561
text_mono bold swash features 13,;62
textymono bold upright 12,§§;
textymono bold upright features 12, 204
text mono extra features 13
textmono font 12, 266
textymonoitalic e Iz, 204
text mono italic features e Iz, 204
textymonoslanted Iz, 204
text_mono_slanted features 12, 204
text monoysmallcaps 13,;62
text_mono small caps,features 13,561
text monoswash e 13,;82
text mono_swash features e 13,;62
textymonojupright 12,§§;
textymono upright features I2, 204
text sans bold italic 12, 204
text sans bold italic features 12, 204
text sans bold slanted 12, 204
text sans_ bold slanted features, 12, 204
text sans_bold swash 12, 204
text sans bold swash features, 12, 204
textysans bold upright I2, 204
textysans bold upright features 12, 204
textsans extra features I3

97

textysans, font ... 12, 266

textysans italic L e I2, 204
text sans italicfeatures oL I2, 204
text sansyslanted e I2, 204
text sans_slanted features I2, 204
textysans; smallicaps 12, 204
textysans;small caps,features, 12, 204
text sans swash e Iz, 204
text sans, swash features e Iz, 204
textysansupright Iz, 204
textysans upright features Iz, 204
textyslanted e 12, 151
text slanted_ features e 12, 151
textysmallcaps 12, 151
textysmall capsyfeatures i 12, 151
text swash e 12, 151
text swash features e 12, 151
textpupright II, 151
text upright features II, 151
\textbf ... 858, 945, 987
Ntextit ... 1629
NEEXESC .o 9, 131, 655
\thechapter 1548
\theenumii 1620, 1621
\theenumiii 1622, 1623
\theenumiv 1624, 1625
\theequationt 1581
\thefigure e 1569
\thefootnote 1575
\thempfootnote 1578
\thepage 1566
\theparagraph 1560
\thesection 1551
\thesubparagraph 1563
\thesubsection 1554
\thesubsubsection 1557
\thetable 1572
tl commands:
\c_space_tl 763, 928, 1079
\tl_clear:N .. 719, 767, 931, 1659, 1660, 1676, 1677, 1807, 1819, 1831, 1843,
2042
\tl_clear_new:N 488, 489, 490
\tl_const:Nnt 1786, 1787, 1788
\tl_gclear_new:N ... 153, 206, 209, 279, 282, 670, 1135, 1188, 1190, 2029
\tl_gput_right:Nn 408, 417, 425, I451
Ntl_gset:Nn 676, 2032
\tl_if_empty:NTF 2055

\tl_if_eq:NnTF 1888, 1906, 1923, 1940, 1957, 1978, 1993, 2013
\tl_new:N 1491, 1774, 1775, 1776, 1777, 1779, 1780, 1781, 1782, 1783
\tl_set:Nn 631, 720, 1646, 1664, 1789, 1790, 1793, 1796, 1797,
1801, 1811, 1812, 1816, 1823, 1824, 1828, 1835, 1836, 1840, 1847, 1851, 1855, 1859,
1863, 1867, 1871, 1875, 1879, 2040, 2049, 2117

\tl_set_eq:NN 1645, 1805, 1817, 1829, 1841
\tl_use:N 773, 780, 787, 794, 813, 815, 821, 823, 829, 831, 838, 862, 947
948, 957, 966, 985, 990, 1590, 2057, 2124, 2179, 2182, 2185, 2188, 2191
NEL_USEID . ot 975

\1_tmpa_tl 719, 720, 728, 767, 770, 773, 93L, 933, 934, 947, 1644, 1645, 1650,
1651, 1653, 1657, 1659, 1663, 1665, 1667, 1670, 1674, 1676

\l_tmpb_tl 1646, 1650, 1660, 1664, 1665, 1677
\ttdefault 1788
U
NUIMELA .« oot e 5, 83
use commands: T

\use:N 722, 733, 801, 839, 1025, 2069, 2077, 2082, 2135, 2143, 2148
NUSEID o .ttt 1024
\use_ii:nonnn 721, 732
\UseTaggingSocket 683

99

	1 Introduction
	2 Planned
	3 Funding
	4 Acknowledgements
	5 LinguisTiX-base
	6 LinguisTiX-fixpex
	7 LinguisTiX-fonts
	8 LinguisTiX-glossing
	9 LinguisTiX-ipa
	10 LinguisTiX-languages
	11 LinguisTiX-logos
	12 LinguisTiX-nfss
	Index

